This report describes night‐time sleep and daytime sleepiness in a large (N=530) sample of patients meeting the International Classification of Sleep Disorders criteria for diagnosis of narcolepsy. Sleep data were obtained from polysomnographic recordings on two consecutive nights. Sleepiness was assessed using the Multiple Sleep Latency Test, the Maintenance of Wakefulness Test and the Epworth Sleepiness Scale. Analysis revealed that sleep was mild to moderately disturbed on both recording nights. A first‐night effect was suggested by decreased REM latency and increased percentage REM and slow‐wave sleep on the second night. Sleepiness and sleep disturbance varied across patient subgroups created based on patient ethnicity and on the presence/absence of cataplexy, sleep apnoea, and periodic limb movements. Covariation of sleep and sleepiness measures across patients was significant but weak. Strong association was found between subgroup means of sleep and sleep disturbance measures. The findings reported here show that sleepiness and sleep disturbance vary across patient subgroups and that sleep disturbance is related to, although unable to account, for the pathological sleepiness of narcolepsy.
A simple and scalable method of decorating 3D-carbon nanotube (CNT) forest with metal particles has been developed. The results observed in aluminum (Al) decorated CNTs and copper (Cu) decorated CNTs on silicon (Si) and Inconel are compared with undecorated samples. A significant improvement in the field emission characteristics of the cold cathode was observed with ultralow turn on voltage (Eto ∼ 0.1 V/μm) due to decoration of CNTs with metal nanoparticles. Contact resistance between the CNTs and the substrate has also been reduced to a large extent, allowing us to get stable emission for longer duration without any current degradation, thereby providing a possibility of their use in vacuum microelectronic devices.
The industrial use of carbon nanotubes is increasing day by day; therefore, it is very important to identify the nature of carbon nanotubes in a bundle. In this study, we have used the Raman spectroscopic analysis on vertically aligned single-walled carbon nanotubes (SWCNTs) grown by the chemical vapour deposition (CVD) technique. The grown sample is excited with two laser excitation wavelengths, 633 nm from He-Ne laser and 514⋅5 nm from Ar + laser. Raman spectrum in the backscattering geometry provides the characteristic spectra of SWCNTs with its radial breathing mode (RBM), defect-induced disorder mode (D band), and highenergy modes (G and M bands). The Raman signal positions of the spectra in RBM, G and M bands confirm the grown sample to be of semiconducting type in nature.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.