During the last decade, there has been considerable interest of researchers towards the use of two-dimensional (2D) materials for the electronic device implementations. The main driving force is the improved performance offered by these 2D materials for electronic device operation in nano-scale regime. Among these 2D material, silicene (the 2D of silicon) has emerged as preferred choice because of its expected integration with silicon based technology. This expected integration of silicene with silicon technology is one of the primary advantages of silicene as a material for future electronic devices with the availability of infrastructure of bulk silicon for its processing. Silicene in its basic form is a conductor due to the zero bandgap formation and therefore several techniques have been given in the open literature for forming the band gap in silicene. Besides, silicene has been used to design several electronic devices ranging from transistors to photodetectors. In this paper, a review of silicene is presented considering a) the features/properties offered by it, b) the methods employed for the generation of its bandgap, c) different types of field effect transistors (FETs) reported on silicene, and d) spintronic applications of silicene.
The industrial use of carbon nanotubes is increasing day by day; therefore, it is very important to identify the nature of carbon nanotubes in a bundle. In this study, we have used the Raman spectroscopic analysis on vertically aligned single-walled carbon nanotubes (SWCNTs) grown by the chemical vapour deposition (CVD) technique. The grown sample is excited with two laser excitation wavelengths, 633 nm from He-Ne laser and 514⋅5 nm from Ar + laser. Raman spectrum in the backscattering geometry provides the characteristic spectra of SWCNTs with its radial breathing mode (RBM), defect-induced disorder mode (D band), and highenergy modes (G and M bands). The Raman signal positions of the spectra in RBM, G and M bands confirm the grown sample to be of semiconducting type in nature.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.