2D hybrid perovskites (2DP) are versatile materials, whose electronic and optical properties can be tuned through the nature of the organic cations (even when those are seemingly electronically inert). Here, it is demonstrated that fluorination of the organic ligands yields glassy 2DP materials featuring long-lived correlated electron-hole pairs. Such states have a marked chargetransfer character, as revealed by the persistent Stark effect in the form of a second derivative in electroabsorption. Modeling shows that electrostatic effects associated with fluorination, combined with the steric hindrance due to the bulky side groups, drive the formation of spatially dislocated charge pairs with reduced recombination rates. This work enriches and broadens the current knowledge of the photophysics of 2DP, which will hopefully guide synthesis efforts toward novel materials with improved functionalities.
The lead-free ferroelectric 0.5Ba(Zr0.2Ti0.8)O3 − 0.5(Ba0.7Ca0.3)TiO3 (BCZT) is a promising component for multifunctional multiferroics due to its excellent room temperature piezoelectric properties. Having a composition close to the polymorphic phase boundary between the orthorhombic and tetragonal phases, it deserves a case study for analysis of its potential for modern electronics applications. To obtain magnetoelectric coupling, the piezoelectric phase needs to be combined with a suitable magnetostrictive phase. In the current article, we report on the synthesis, dielectric, magnetic, and magnetoelectric characterization of a new magnetoelectric multiferroic composite consisting of BCZT as a piezoelectric phase and CoFe2O4 (CFO) as the magnetostrictive phase. We found that this material is multiferroic at room temperature and manifests a magnetoelectric effect larger than that of BaTiO3 −CoFe2O4 bulk composites with similar content of the ferrite phase.
Magnetoelectric coupling is the material based coupling between electric and magnetic fields without recurrence to electrodynamics. It can arise in intrinsic multiferroics as well as in composites. Intrinsic multiferroics rely on atomistic coupling mechanisms, or coupled crystallographic order parameters, and even more complex mechanisms. They typically require operating temperatures much below T = 0°C in order to exhibit their coupling effects. Room temperature applications are thus excluded. Consequently, composites have been designed to circumvent this limitation. They rely on field coupling between magnetostrictive and piezoelectric materials or in more advanced scenarios on quantum coupling in between both phases.This overview will describe experimental techniques and their particular limitations in accessing these coupling phenomena at different scales. Strain coupling is the dominant coupling mechanism at the macroscale as well as down to the micrometer. At the nanoscale more subtle effects can arise and some care has to be taken when investigating local coupling at interfaces using scanning probe techniques, e. g. due to semiconductor effects, field screening, or gradient and surface effects. At the smallest length scale atomic or molecular coupling can be tested using X‐ray dichroism or probe atoms like 57Fe in Mössbauer spectroscopy. We display a selection of measuring techniques at the different scales and outline possible pitfalls for experimentalists as well as theoreticians when using material parameters extracted from such experimental work. (© 2015 WILEY‐VCH Verlag GmbH & Co. KGaA, Weinheim)
A study on magnetoelectric phenomena in the barium titanate-barium hexaferrite (BaTiO3-BaFe12O19) composite system, using high resolution techniques including switching spectroscopy piezoresponse force microscopy (SSPFM) and spatially resolved confocal Raman microscopy (CRM), is presented. It is found that both the local piezoelectric coefficient and polarization switching parameters change on the application of an external magnetic field. The latter effect is rationalized by the influence of magnetostrictive stress on the domain dynamics. Processing of the Raman spectral data using principal component analysis (PCA) and self-modelling curve resolution (SMCR) allowed us to achieve high resolution phase distribution maps along with separation of average and localized spectral components. A significant effect of the magnetic field on the Raman spectra of the BaTiO3 phase has been revealed. The observed changes are comparable with the classical pressure dependent studies on BaTiO3, confirming the strain mediated character of the magnetoelectric coupling in the studied composites.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.