The surface tension driven flow in the liquid vicinity of gas bubbles on a heated solid wall has been investigated both, in a reduced gravity environment aboard a sounding rocket, and in an earth-bound experiment. Both experiments deal with temperature gradients within the liquid surrounding of a bubble which cause variations of the surface tension. These, in turn, lead to a liquid flow around the bubble periphery termed thermocapillary or thermal Marangoni-convection. On Earth, this phenomenon is widely masked by buoyancy. We therefore carried out an experiment under reduced gravitational acceleration. In order to simultaneously observe and record the flow field and the temperature field liquid crystal tracers have been applied. These particles offer the feature of selectively reflecting certain wavelengths of incident white light depending on the crystals temperature. Although the bubble injection system did not perform nominally during the flight experiment, some interesting flow characteristics could be observed. Comparison of results obtained in microgravity to data measured on Earth reveal that due to the interaction of thermocapillarity and buoyancy a very compact vortex flow results on ground, while in microgravity the influence on the surface tension driven flow penetrates much deeper into the bulk. This result is of special interest regarding the production of materials in space.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.