Tricalcium phosphate (TCP) ceramic is known in orthopedics to be a bioresorbable bone substitute. A porous TCP ceramic body also has high potential as a drug delivery system in bony defects. Porous alpha-TCP ceramic can be easily fabricated using conventional sintering of beta-TCP, since alpha-TCP is the thermodynamically stable phase at temperatures above 1 100 degrees C. However, the solubility of alpha-TCP is much higher than that of beta-TCP. Therefore, the dissolution of porous alpha-TCP progresses at a higher rate than bone repair. In the present study, we attempted to reduce the dissolution rate of porous alpha-TCP by employing an organic polymer coating. We fabricated porous alpha-TCP ceramic with a continuous 10-50 microm diameter pore structure by sintering a body made from a beta-TCP and potato starch slurry. The porous body obtained was coated with hydroxypropylcellulose (HPC), and then subjected to heat treatment. The chemical durability and mechanical properties of the body were examined before and after coating with the HPC. The dissolution of porous alpha-TCP in buffered solutions was reduced by coating with HPC and drying at 60 degrees C. The compressive strength of the porous alpha-TCP was also improved by coating with HPC. The results of in vivo experiments showed that some parts of the porous alpha-TCP ceramic coated with HPC remained in the canal of the tibia of a rabbit four weeks after implantation, whereas no residual was observed in a non-coated alpha-TCP ceramic. Coating with HPC was found to be effective for controlling bioresorption and improving the workability of porous alpha-TCP ceramic. The prepared porous alpha-TCP ceramic is expected to be useful as a novel material for bone fillers by incorporating it with drugs or osteoinductive factors.
We have developed a method for monitoring regional venous oxygen saturation. The key feature of this system is the use of highly flexible polymer fiber optics, and this flexibility allowed the production of a new fiber-optic transmission catheter. The space between the "face-to-face" positioned fiber-optic tips forms a remote catheter-based transmission cell. Our method applies Twersky's theory, in which absorption and scattering can be treated independently. Fresh rabbit blood was pumped through a disk oxygenator in which gas exchange occurred and passed the catheter. Simultaneous results obtained by the catheter and a cuvette oximeter were excellent (r = 0.99, SD = 1.1%). Oxygen saturation measured by this catheter was independent of vessel wall artifacts, blood pH, and flow velocity. Another application of this method is measurement of blood flow by the dye- (indocyanine green) dilution technique. The results of flow measurements by the catheter appeared to be satisfactory (r = 0.99, SD = 1.7%). This study concludes that our method is effective for monitoring the balance between regional oxygen supply and demand.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.