BackgroundThere is still a substantial unmet need for less invasive and lower-cost blood-based biomarkers to detect brain Alzheimer’s disease (AD) pathology. This study is aimed to determine whether quantification of plasma tau phosphorylated at threonine 181 (p-tau181) is informative in the diagnosis of AD.MethodsWe have developed a novel ultrasensitive immunoassay to quantify plasma p-tau181, and measured the levels of plasma p-tau181 in three cohorts.ResultsIn the first cohort composed of 20 AD patients and 15 age-matched controls, the plasma levels of p-tau181 were significantly higher in the AD patients than those in the controls (0.171 ± 0.166 pg/ml in AD versus 0.0405 ± 0.0756 pg/ml in controls, p = 0.0039). The percentage of the subjects whose levels of plasma p-tau181 exceeded the cut-off value (0.0921 pg/ml) was significantly higher in the AD group compared with the control group (60% in AD versus 16.7% in controls, p = 0.0090). In the second cohort composed of 20 patients with Down syndrome (DS) and 22 age-matched controls, the plasma concentrations of p-tau181 were significantly higher in the DS group (0.767 ± 1.26 pg/ml in DS versus 0.0415 ± 0.0710 pg/ml in controls, p = 0.0313). There was a significant correlation between the plasma levels of p-tau181 and age in the DS group (R2 = 0.4451, p = 0.0013). All of the DS individuals showing an extremely high concentration of plasma p-tau181 (> 1.0 pg/ml) were older than the age of 40. In the third cohort composed of 8 AD patients and 3 patients with other neurological diseases, the levels of plasma p-tau181 significantly correlated with those of CSF p-tau181 (R2 = 0.4525, p = 0.023).ConclusionsWe report for the first time quantitative data on the plasma levels of p-tau181 in controls and patients with AD and DS, and these data suggest that the plasma p-tau181 is a promising blood biomarker for brain AD pathology. This exploratory pilot study warrants further large-scale and well-controlled studies to validate the usefulness of plasma p-tau181 as an urgently needed surrogate marker for the diagnosis and disease progression of AD.Electronic supplementary materialThe online version of this article (doi:10.1186/s13024-017-0206-8) contains supplementary material, which is available to authorized users.
IntroductionAlzheimer’s disease (AD) is the most dominant neurodegenerative disorder that causes dementia, and no effective treatments are available. To study its pathogenesis and develop therapeutics, animal models representing its pathologies are needed. Although many animal species develop senile plaques (SP) composed of amyloid-β (Aβ) proteins that are identical to those found in humans, none of them exhibit neurofibrillary tangles (NFT) and subsequent neurodegeneration, which are integral parts of the pathology of AD.ResultsThe present study shows that Aβ accumulation, NFT formation, and significant neuronal loss all emerge naturally in the hippocampi of aged domestic cats. The NFT that form in the cat brain are identical to those seen in human AD in terms of their spatial distribution, the cells they affect, and the tau isoforms that comprise them. Interestingly, aged cats do not develop mature argyrophilic SP, but instead accumulate intraneuronal Aβ oligomers in their hippocampal pyramidal cells, which might be due to the amino acid sequence of felid Aβ.ConclusionsThese results suggest that Aβ oligomers are more important than SP for NFT formation and the subsequent neurodegeneration. The domestic cat is a unique animal species that naturally replicates various AD pathologies, especially Aβ oligomer accumulation, NFT formation, and neuronal loss.Electronic supplementary materialThe online version of this article (doi:10.1186/s40478-015-0258-3) contains supplementary material, which is available to authorized users.
Amyloid β-protein (Aβ42) oligomerization is an early event in Alzheimer’s disease (AD). Current diagnostic methods using sequence-specific antibodies against less toxic fibrillar and monomeric Aβ42 run the risk of overdiagnosis. Hence, conformation-specific antibodies against neurotoxic Aβ42 oligomers have garnered much attention for developing more accurate diagnostics. Antibody 24B3, highly specific for the toxic Aβ42 conformer that has a turn at Glu22 and Asp23, recognizes a putative Aβ42 dimer, which forms stable and neurotoxic oligomers more potently than the monomer. 24B3 significantly rescues Aβ42-induced neurotoxicity, whereas sequence-specific antibodies such as 4G8 and 82E1, which recognizes the N-terminus, do not. The ratio of toxic to total Aβ42 in the cerebrospinal fluid of AD patients is significantly higher than in control subjects as measured by sandwich ELISA using antibodies 24B3 and 82E1. Thus, 24B3 may be useful for AD diagnosis and therapy.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.