Total synthesis of podophyllotoxin is an expensive process and availability of the compound from the natural resources is an important issue for pharmaceutical companies that manufacture anticancer drugs. In order to facilitate reasoned scientific decisions on its management and conservation for selective breeding programme, genetic analysis of 28 populations was done with 19 random primers, 11 ISSR primers and 13 AFLP primer pairs. A total of 92.37 %, 83.82 % and 84.40 % genetic polymorphism among the populations of Podophyllum were detected using RAPD, ISSR and AFLP makers, respectively. Similarly the mean coefficient of gene differentiation (Gst) were 0.69, 0.63 and 0.51, indicating that 33.77 %, 29.44 % and 26 % of the genetic diversity resided within the population. Analysis of molecular variance (AMOVA) indicated that 53 %, 62 % and 64 % of the genetic diversity among the studied populations was attributed to geographical location while 47 %, 38 % and 36 % was attributed to differences in their habitats using RAPD, ISSR and AFLP markers. An overall value of mean estimated number of gene flow (Nm) were 0.110, 0.147 and 0.24 from RAPD, ISSR and AFLP markers indicating that there was limited gene flow among the sampled populations.
In current study isolates of two native microalgae species were screened on the basis of growth kinetics and lipid accumulation potential. On the basis of data obtained on growth parameters and lipid accumulation, it is concluded that Scenedesmus dimorphus has better potential as biofuel feedstock. Two of the isolates of Scenedesmus dimorphus performed better than other isolates with respect to important growth parameters with lipid content of ~30% of dry biomass. Scenedesmus dimorphus was found to be more suitable as biodiesel feedstock candidate on the basis of cumulative occurrence of five important biodiesel fatty acids, relative occurrence of SFA (53.04%), MUFA (23.81%) and PUFA (19.69%), and more importantly that of oleic acid in its total lipids. The morphological observations using light and Scanning Electron Microscope and molecular characterization using amplified 18S rRNA gene sequences of microalgae species under study were also performed. Amplified 18S rRNA gene fragments of the microalgae species were sequenced, annotated at the NCBI website and phylogenetic analysis was done. We have published eight 18S rRNA gene sequences of microalgae species in NCBI GenBank.
Noncompetitive inhibitors of sarco/endoplasmic reticulum Ca(2+)-ATPase (SERCA) orthologue (PfATP6) of P. falciparum have important therapeutic value in the treatment of malaria. Artemisinin and its analogues are one such class of inhibitors which bind to a hydrophobic pocket located in the transmembrane region of PfATP6 near the biomembrane surface and interfere with calcium transport. The 3D structure of PfATP6 was modeled by homology modeling. A library consisting of 150 artemisinin analogues has been designed. Their molecular interactions and binding affinities with modeled PfATP6 protein have been studied using the docking, molecular mechanics based on generalized Born/surface area (MM-GBSA) solvation model and multi-ligand bimolecular association with energetics (eMBrAcE). Structure activity relationship models were developed between the antimalarial activity (log RA) and molecular descriptors like docking score and binding free energy. For both the cases the r(2) was in the range of 0.538-0.688 indicating good data fit and r(2)(cv) was in the range of 0.525-0.679 indicating that the predictive capabilities of the models were acceptable. Besides, a scheme similar to linear response was used to develop free energy of binding (FEB) relationship based on electrostatic (∆G(ele)), van der Waal (∆G(vdW)) and surface accessible surface area (SASA), which can express the activity of these artemisinin derivatives. It has been seen that ∆G(vdW) has most significant correlation to the activity (log RA) and electrostatic energy (∆G(ele)) has less significant correlation. It indicates that the binding of these artemisinin derivatives to PfATP6 is almost hydrophobic. Low levels of root mean square error for the majority of inhibitors establish the docking, Prime/MM-GBSA and eMBrAcE based prediction model is an efficient tool for generating more potent and specific inhibitors of PfATP6 by testing rationally designed lead compound based on artemisinin derivatization.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.