With the increased dependence on online learning platforms and educational resource repositories, a unified representation of digital learning resources becomes essential to support a dynamic and multi-source learning experience. We introduce the EduCOR ontology, an educational, career-oriented ontology that provides a foundation for representing online learning resources for personalised learning systems. The ontology is designed to enable learning material repositories to offer learning path recommendations, which correspond to the user’s learning goals and preferences, academic and psychological parameters, and labour-market skills. We present the multiple patterns that compose the EduCOR ontology, highlighting its cross-domain applicability and integrability with other ontologies. A demonstration of the proposed ontology on the real-life learning platform eDoer is discussed as a use case. We evaluate the EduCOR ontology using both gold standard and task-based approaches. The comparison of EduCOR to three gold schemata, and its application in two use-cases, shows its coverage and adaptability to multiple OER repositories, which allows generating user-centric and labour-market oriented recommendations.Resource: https://tibonto.github.io/educor/.
Knowledge integration is well explained by the human–organization–technology (HOT) approach known from knowledge management. This approach contains the horizontal and vertical interaction and communication between employees, human-to-machine, but also machine-to-machine. Different organizational structures and processes are supported with the help of appropriate technologies and suitable data processing and integration techniques. In a Smart Factory, manufacturing systems act largely autonomously on the basis of continuously collected data. The technical design concerns the networking of machines, their connectivity and the interaction between human and machine as well as machine-to-machine. Within a Smart Factory, machines can be considered as intelligent manufacturing systems. Such manufacturing systems can autonomously adapt to events through the ability to intelligently analyze data and act as adaptive manufacturing systems that consider changes in production, the supply chain and customer requirements. Inter-connected physical devices, sensors, actuators, and controllers form the building block of the Smart Factory, which is called the Internet of Things (IoT). IoT uses different data processing solutions, such as cloud computing, fog computing, or edge computing, to fuse and process data. This is accomplished in an integrated and cross-device manner.
The production of microchips is a complex and thus well documented process. Therefore, available textual data about the production can be overwhelming in terms of quantity. This affects the visibility and retrieval of a certain piece of information when it is most needed. In this paper, we propose a dynamic approach to interlink the information extracted from multisource production-relevant documents through the creation of a knowledge graph. This graph is constructed in order to support searchability and enhance user's access to large-scale production information. Text mining methods are firstly utilized to extract data from multiple documentation sources. Document relations are then mined and extracted for the composition of the knowledge graph. Graph search functionality is then supported with a recommendation use-case to enhance users' access to information that is related to the initial documents. The proposed approach is tailored to and tested on microchip design-relevant documents. It enhances the visibility and findability of previous design-failure-cases during the process of a new chip design.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.