The development of ultra-low carbon emission electric vehicles (EVs) has been grown rapidly over the last years in response to the large share of greenhouse gas emissions contributed by the transportation sector. One of the main issues among EV drivers is range anxiety, which mainly results from the long charging battery durations. DC fast charging, the latest charging technology, aims to shorten charging duration; however, the success of e-mobility will be also related to the capacity of the distribution network to integrate the new EVs and their chargers. Specifically, the integration of EVs and DC fast chargers will increase the peak demand and may pose significant challenges for MV and LV distribution networks if adequate control measures are not implemented. This paper introduces a topology for the modelling and connection of a DC fast charger on a real MV/LV distribution network and ensures that the network operates within acceptable limits and that consumers connected to it are minimally affected. Simulation results show that DC fast chargers stress the LV distribution network by causing grid congestions; however, local voltage control measures and a vehicle-to-grid technology can improve some of the grid-side challenges.
The transportation sector is one of the largest sources of greenhouse gas emissions. This has encouraged governments worldwide to fund the development of ultra-low carbon emission vehicles and replace internal combustion engine (ICE) vehicles with electric vehicles (EVs). Among EV drivers, 'range anxiety' is one of the main issues resulting from long charging durations. The reduction of charging duration by the introduction of DC fast/rapid charging stations is widely discussed in the literature. However, high charging demands due to fast charging stations may cause some challenges for power networks. In this paper, the impacts of different types of fast chargers on a UK generic distribution network are investigated. The most suitable and robust connection points of the network where fast chargers can be deployed are identified without affecting the stability and security of the system. The main findings show that network losses increase, voltages operate beyond strict limits, and system equipment becomes overloaded with increased fast charging activities in the network. Therefore, critical network points are reinforced with distributed generation units (DG) and static VAr compensator (SVC) devices to improve the system reliability and mitigate the impacts of such challenges.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.