To obtain a high data rate that is commensurate with the growing demand for internet services, the fifth generation (5G) cellular networks will use the bandwidth beyond 6 GHz, called millimeters waves (mm-waves), to obtain a higher. The first phase (phase I) of the 5G network design for high user density, where the optimized microcells are deployed at carrier frequency 700 MHz with 20 MHz bandwidth. The second phase (phase II) of the design consists of the deployment of microcells which are operating at 3.6 GHz with 100 MHz bandwidth; this phase is planned to cover 200000 users within the province. The third phase (phase III) of the design is represented by the deployment of picocells, which are planned to operate at 26 GHz frequency and bandwidth 500 MHz; this phase is planned to cover 3,500,000 users within the province. Two types of modulation are adopted for the network (orthogonal frequency division multiplexing (OFDM) and 256 quadrature amplitude modulation (QAM)); the overall performance of the network is studied with regards to the percentage of coverage, power overlapping ratio, frequency interference, and quality of service (QoS).
This research presents a study, modelling and simulation of the piezoelectric material work as filters (piezoelectric filter) used to eliminate the harmonics in power electronic circuits, high order harmonics are generating due to the high switching frequencies and circuit equipment, detailed simulation is achieved for the piezoelectric filter tested in full-bridge DC/DC converter circuit with resistive load works as dc power supply (12 to 48 volt). As a result, the uses of piezoelectric filters have a great impact on harmonics elimination, which leads to reduce the overall total harmonic distortion leads to increase the efficiency, as well as the output voltage from the dc power supply remain constant by varying the load resistance over a wide range. The dc power supply circuit including the piezoelectric filter has been simulated using PSIM (V9.1) power electronic circuit simulation software.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.