Aluminum (Al) has been associated with neuronal dysfunction. These neuronal changes may involve glial alterations. We intend to evaluate the consequence of Al on the glial system and the behavior of rats exposed chronically to 0.3% of aluminum chloride in drinking water during 4 months in adulthood (A) or since intra-uterine age (IU); animals from this latter group were sacrificed at four months of age. Our data show an intense glial fibrillary acidic protein (GFAP)-immunoreactivity with a high density of astrocytes in both treated groups compared with controls. However, in IU rats, astrocytes display prominent glial cell bodies and processes. A and IU rat groups perform a significantly reduced locomotor activity. However, using the dark/light box test, the IU rats prefer to spend more time in the enlightened compartment compared to other groups. Behavioral and glial changes caused by Al exposure bring support for the role of Al in brain dysfunction involving glial alterations.
Lead poisoning is one of the most significant health problem of environmental origin. It is known to cause different damages in the central and peripheral nervous system which could be represented by several neurophysiological and behavioral symptoms. In this study we firstly investigated the effect of lead prenatal exposure in rats to (3g/L), from neonatal to young age, on the motor/sensory performances, excitability of the spinal cord and gaits during development. Then we evaluated neuroprotective effects of curcumin I (Cur I) against lead neurotoxicity, by means of grasping and cliff avoidance tests to reveal the impairment of the sensorimotor functions in neonatal rats exposed prenatally to lead. In addition, extracellular recordings of motor output in spinal cord revealed an hyper-excitability of spinal networks in lead treated rats. The frequency of induced fictive locomotion was also increased in treated rats. At the young age, rats exhibited an impaired locomotor gait. All those abnormalities were attenuated by Cur I treatment at a dose of 16g/kg. Based on our finding, Cur I has shown features of a potent chemical compound able to restore the neuronal and the relative locomotor behaviors disturbances induced by lead intoxication. Therefore, this chemical can be recommended as a new therapeutic trial against lead induced neurotoxicity.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.