Abstract-Short vowels in Arabic are normally omitted in written text which leads to ambiguity in the pronunciation. This is even more pronounced for dialectal Arabic where a single word can be pronounced quite differently based on the speaker's nationality, level of education, social class and religion. In this paper we focus on pronunciation modeling for Iraqi-Arabic speech. We introduce multiple pronunciations into the Iraqi speech recognition lexicon, and compare the performance, when weights computed via forced alignment are assigned to the different pronunciations of a word. Incorporating multiple pronunciations improved recognition accuracy compared to a single pronunciation baseline and introducing pronunciation weights further improved performance. Using these techniques an absolute reduction in word-error-rate of 2.4% was obtained compared to the baseline system.
Morphologically rich languages pose a challenge for statistical machine translation (SMT). This challenge is magnified when translating into a morphologically rich language. In this work we address this challenge in the framework of a broad-coverage English-to-Arabic phrase based statistical machine translation (PBSMT). We explore the full spectrum of Arabic segmentation schemes ranging from full word form to fully segmented forms and examine the effects on system performance. Our results show a difference of 2.61 BLEU points between the best and worst segmentation schemes indicating that the choice of the segmentation scheme has a significant effect on the performance of a PBSMT system in a large data scenario. We also show that a simple segmentation scheme can perform as good as the best and more complicated segmentation scheme. We also report results on a wide set of techniques for recombining the segmented Arabic output.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.