The computational treatment of emotion in natural language text remains relatively limited, and Arabic is no exception. This is partly due to lack of labeled data. In this work, we describe and manually validate a method for the automatic acquisition of emotion labeled data and introduce a newly developed data set for Modern Standard and Dialectal Arabic emotion detection focused at Robert Plutchik's 8 basic emotion types. Using a hybrid supervision method that exploits first person emotion seeds, we show how we can acquire promising results with a deep gated recurrent neural network. Our best model reaches 70% Fscore, significantly (i.e., 11%, p < 0.05) outperforming a competitive baseline. Applying our method and data on an external dataset of 4 emotions released around the same time we finalized our work, we acquire 7% absolute gain in F-score over a linear SVM classifier trained on gold data, thus validating our approach.
Emotion recognition (ER) is an important task in Natural Language Processing (NLP), due to its high impact in real-world applications from health and well-being to author profiling, consumer analysis and security. Current approaches to ER, mainly classify emotions independently without considering that emotions can co-exist. Such approaches overlook potential ambiguities, in which multiple emotions overlap. We propose a new model "SpanEmo" casting multi-label emotion classification as span-prediction, which can aid ER models to learn associations between labels and words in a sentence. Furthermore, we introduce a loss function focused on modelling multiple coexisting emotions in the input sentence. Experiments performed on the SemEval2018 multilabel emotion data over three language sets (i.e., English, Arabic and Spanish) demonstrate our method's effectiveness. Finally, we present different analyses that illustrate the benefits of our method in terms of improving the model performance and learning meaningful associations between emotion classes and words in the sentence 1 .
The availability of large-scale and real-time data on social media has motivated research into adverse drug reactions (ADRs). ADR classification helps to identify negative effects of drugs, which can guide health professionals and pharmaceutical companies in making medications safer and advocating patients' safety. Based on the observation that in social media, negative sentiment is frequently expressed towards ADRs, this study presents a neural model that combines sentiment analysis with transfer learning techniques to improve ADR detection in social media postings. Our system is firstly trained to classify sentiment in tweets concerning current affairs, using the SemEval17-task4A corpus. We then apply transfer learning to adapt the model to the task of detecting ADRs in social media postings. We show that, in combination with rich representations of words and their contexts, transfer learning is beneficial, especially given the large degree of vocabulary overlap between the current affairs posts in the SemEval17-task4A corpus and posts about ADRs. We compare our results with previous approaches, and show that our model can outperform them by up to 3% F-score.
Background In recent years, the COVID-19 pandemic has brought great changes to public health, society, and the economy. Social media provide a platform for people to discuss health concerns, living conditions, and policies during the epidemic, allowing policymakers to use this content to analyze the public emotions and attitudes for decision-making. Objective The aim of this study was to use deep learning–based methods to understand public emotions on topics related to the COVID-19 pandemic in the United Kingdom through a comparative geolocation and text mining analysis on Twitter. Methods Over 500,000 tweets related to COVID-19 from 48 different cities in the United Kingdom were extracted, with the data covering the period of the last 2 years (from February 2020 to November 2021). We leveraged three advanced deep learning–based models for topic modeling to geospatially analyze the sentiment, emotion, and topics of tweets in the United Kingdom: SenticNet 6 for sentiment analysis, SpanEmo for emotion recognition, and combined topic modeling (CTM). Results We observed a significant change in the number of tweets as the epidemiological situation and vaccination situation shifted over the 2 years. There was a sharp increase in the number of tweets from January 2020 to February 2020 due to the outbreak of COVID-19 in the United Kingdom. Then, the number of tweets gradually declined as of February 2020. Moreover, with identification of the COVID-19 Omicron variant in the United Kingdom in November 2021, the number of tweets grew again. Our findings reveal people’s attitudes and emotions toward topics related to COVID-19. For sentiment, approximately 60% of tweets were positive, 20% were neutral, and 20% were negative. For emotion, people tended to express highly positive emotions in the beginning of 2020, while expressing highly negative emotions over time toward the end of 2021. The topics also changed during the pandemic. Conclusions Through large-scale text mining of Twitter, our study found meaningful differences in public emotions and topics regarding the COVID-19 pandemic among different UK cities. Furthermore, efficient location-based and time-based comparative analysis can be used to track people’s thoughts and feelings, and to understand their behaviors. Based on our analysis, positive attitudes were common during the pandemic; optimism and anticipation were the dominant emotions. With the outbreak and epidemiological change, the government developed control measures and vaccination policies, and the topics also shifted over time. Overall, the proportion and expressions of emojis, sentiments, emotions, and topics varied geographically and temporally. Therefore, our approach of exploring public emotions and topics on the pandemic from Twitter can potentially lead to informing how public policies are received in a particular geographical area.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.