While the search for catalysts capable of directly converting methane to higher value commodity chemicals and liquid fuels has been active for over a century, a viable industrial process for selective methane activation has yet to be developed. Electronic structure calculations are playing an increasingly relevant role in this search, but large-scale materials screening efforts are hindered by computationally expensive transition state barrier calculations. The purpose of the present letter is twofold. First, we show that, for the wide range of catalysts that proceed via a radical intermediate, a unifying framework for predicting C-H activation barriers using a single universal descriptor can be established. Second, we combine this scaling approach with a thermodynamic analysis of active site formation to provide a map of methane activation rates. Our model successfully rationalizes the available empirical data and lays the foundation for future catalyst design strategies that transcend different catalyst classes.
While natural gas is an abundant chemical fuel, its low volumetric energy density has prompted a search for catalysts able to transform methane into more useful chemicals. This search has often been aided through the use of transition state (TS) scaling relationships, which estimate methane activation TS energies as a linear function of a more easily calculated descriptor, such as final state energy, thus avoiding tedious TS energy calculations. It has been shown that methane can be activated via a radical or surface-stabilized pathway, both of which possess a unique TS scaling relationship. Herein, we present a simple model to aid in the prediction of methane activation barriers on heterogeneous catalysts. Analogous to the universal radical TS scaling relationship introduced in a previous publication, we show that a universal TS scaling relationship that transcends catalysts classes also seems to exist for surface-stabilized methane activation if the relevant final state energy is used. We demonstrate that this scaling relationship holds for several reducible and irreducible oxides, promoted metals, and sulfides. By combining the universal scaling relationships for both radical and surface-stabilized methane activation pathways, we show that catalyst reactivity must be considered in addition to catalyst geometry to obtain an accurate estimation for the TS energy. This model can yield fast and accurate predictions of methane activation barriers on a wide range of catalysts, thus accelerating the discovery of more active catalysts for methane conversion.
To limit further rising levels in methane emissions from stationary and mobile sources and to enable promising technologies based on methane, the development of efficient combustion catalysts that completely oxidize CH4 to CO2 and H2O at low temperatures in the presence of high steam concentrations is required. Palladium is widely considered as one of the most promising materials for this reaction, and a better understanding of the factors affecting its activity and stability is crucial to design even more improved catalysts that efficiently utilize this precious metal. Here we report a study of the effect of three important variables (particle size, support, and reaction conditions including water) on the activity of supported Pd catalysts. We use uniform palladium nanocrystals as catalyst precursors to prepare a library of well-defined catalysts to systematically describe structure–property relationships with help from theory and in situ X-ray absorption spectroscopy. With this approach, we confirm that PdO is the most active phase and that small differences in reaction rates as a function of size are likely due to variations in the surface crystal structure. We further demonstrate that the support exerts a limited influence on the PdO activity, with inert (SiO2), acidic (Al2O3), and redox-active (Ce0.8Zr0.2O2) supports providing similar rates, while basic (MgO) supports show remarkably lower activity. Finally, we show that the introduction of steam leads to a considerable decrease in rates that is due to coverage effects, rather than structural and/or phase changes. Altogether, the data suggest that to further increase the activity and stability of Pd-based catalysts for methane combustion, increasing the surface area of supported PdO phases while avoiding strong adsorption of water on the catalytic surfaces is required. This study clarifies contrasting reports in the literature about the active phase and stability of Pd-based materials for methane combustion.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.