Evidence has shown that ubiquitin proteasome system (UPS) impairment plays an important role in the dopamine (DA) neurodegeneration in Parkinson's disease (PD). It has been reported that application of proteasomal inhibitor lactacystin in ventral mesencephalon (VM) cultures can cause DA neurodegeneration, although the underlying mechanisms are not clear. Herein, we used the lactacystin-induced DA cell degeneration model to study the neuroprotection of glial cellderived neurotrophic factor (GDNF) in VM cultures. We measured the expression of endoplasmic reticulum stress (ERS)-related genes, and determined the caspase-3 activation, apoptotic cell death, as well as a-synuclein-positive inclusions in DA neurons. We found that GDNF treatment significantly suppressed the expression of ERS-related genes and inhibited the activation of caspase-3 and apoptotic cell death without affecting a-synuclein-positive inclusions in DA neurons. Our study suggests that the protection of GDNF against DA neurodegeneration in the UPS impairment model is associated with ERS and caspase-3 suppression.
Postprandial endothelial function was improved by endurance exercise performed approximately 17 h earlier. This effect was accompanied by exercise-induced improvements in insulin action and reductions in glycemia, but did not correspond with reductions in oxidative stress, as assessed by TBARS.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.