This paper presents a new way to design a broadband harvester for harvesting high energy over a low-frequency range of 10–15 Hz. The design comprises a cantilever beam with two parallel grooves to form three dissimilar length parallel branches, each with an unequal concentrated tip mass. The piezoelectric material covers the whole length on both sides of the beam to form a bimorph. Appropriate geometry and mass magnitudes are obtained by a parametric study using the Finite Element Method. The design was simulated in COMSOL Multiphysics to study its response. The first three bending modes were utilized in energy harvesting, resulting in three power peaks at their respective fundamental frequencies. The adequate load resistance determined was 5.62 kΩ, at which maximum power can be harvested. The proposed harvester was compared to two other harvesters presented in the literature for validation: First, an optimized conventional harvester while the proposed harvester is operating at adequate load resistance. Second, a multimodal harvester, while the proposed harvester is operating at a 10 kΩ load. The suggested harvester proved to be more efficient by harvesting sufficiently higher broadband energy and is applicable in a wide range of vibration environments because of its adaptability in design.
Vertical axis wind turbines (VAWTs) are used to convert wind energy to mechanical output or electricity. Vertical axis wind turbines are favorable at buildings as it can receive wind from any direction, have a design that can be integrated simply with building architecture and they have better response in turbulent wind flow which is common in urban areas. Using a calculation code based on the Double Multiple Stream Tube theory, symmetrical straight-bladed NACA0012 wind turbine performance was evaluated. The induction factor for both upwind and downwind zone is determined with the aid of a root-finding algorithm. This numerical analysis highlighted how turbine performance is strongly influenced by the wind speed (Reynolds number) and rotor solidity (turbine radius and blade chord length). Also a dimensional analysis is introduced and is to be considered in such a way to generalize the design for different turbine specifications. One of the qualities provided by dimensional analysis is that geometrically similar turbines will produce the same non-dimensional results. This allows one to make comparison between different sizes wind turbines in terms of power output and other related variables. One of the main problems affecting the turbine performance and dynamics is the torque ripple phenomena. So in this paper a turbine design configuration is introduced in order to decrease the turbine torque fluctuation. This design is carried out by constructing more similar turbine units (stages) on the vertical axis on top of each other with different orientation phase angles. The results showed that using even number of turbine assembly is better than odd number to avoid torque fluctuation and mechanical vibrations acting on the turbine. Also it is preferred to use four turbine stages as the eight stages will have no sensible effect on decreasing the torque fluctuation.
: The emerging new COVID 2019 pandemic, which started in 2019 in China (Wuhan) and is caused by SARS-CoV-2, raises critical concerns due to high morbidity and mortality. Given a large number of infected individuals and the fact that the number continues to rise, it's possible that the virus has multiple variants, some of which are more pathogenic than others.Besides, the virus is suspected of various evolutionary pathways since SARS-CoV-2 belongs to the RNA viruses’ family, which is characterized by a high mutation rate. Additionally, it is crucial to understand the life cycle of the virus to be able to urge antiviral studies. Genotyping studies about viruses are also important in order to understand the transmission and evolution of the virus. The genome of SARS-CoV-2 has a furin-like cleavage site in its S protein that may affect its pathogenicity. It was found that insertions and deletions in S protein have an impact on the transmission and fusion of the virus. The single nucleotide polymorphisms (SNP) genotypes are used to track the relationship of virus isolates. Sequence alignment revealed the presence of hundreds of inter-host mutations during person-to-person transmission. Furthermore, genetic recombination provided a second mechanism for virus evolution. In this review, we highlight the life cycle of the virus and methods of virus evolution caused by mutations or recombination of viral genomes.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.