<p>Under climate change, shifting &#160;weather conditions, (both in terms of increasing frequency and intensifying magnitude) result in increasing occurrence of catastrophic failures of the constantly exposed and ageing infrastructure, across the world. Energetic flow events, advected past hydraulic infrastructure (such as bridge piers and abutments), may lead to scour [1, 2, 3], which is the primary cause of bridge collapses, resulting in high socio-economical costs, including loss of life.</p><p>This research aims to demonstrate the use of a novel monitoring device for the assessment of scour initiated by turbulent flows. This is pursued via the use of a miniaturized instrumented particle, namely &#8220;smart-sphere&#8221;, to record directly the frequency of entrainment from its downstream placement a model bridge pier at the Water Engineering lab of the University of Glasgow [4, 5, 6]. The change in entrainment frequencies is used as a metric to assess the increasing risk to scour, with increasing flow conditions, recorded acoustic Doppler velocimetry (ADV). The utility of the method as well as the potential use of the acquired data for prediction of bridge pier scour is presented and the tool as well is discussed with the potential for use to an appropriate field site [7, 8, 9].</p><p>&#160;</p><p>Acknowledgments</p><p>This research project has been supported by Transport Scotland, under the 2019/20 Innovation Fund and the Student research award.</p><p>&#160;</p><p>References</p><p>[1] P&#228;htz, Th., Clark, A., Duran, O., Valyrakis, M. 2019. The physics of sediment transport initiation, cessation and entrainment across aeolian and fluvial environments, Reviews of Gephysics, https://doi.org/10.1029/2019RG000679.</p><p>[2] Yagci, O., Celik, F., Kitsikoudis, V., Kirca, O., Hodoglu, C., Valyrakis, M., Duran, Z., Kaya S. 2016. Scour patterns around individual vegetation elements, Advances in Water Resources, 97, pp 251-265, doi: 10.1016/j.advwatres.2016.10.002.</p><p>[3] Michalis, P., Saafi, M. and M.D. Judd. (2012) Integrated Wireless Sensing Technology for Surveillance and Monitoring of Bridge Scour. Proceedings of the 6th International Conference on Scour and Erosion, France, Paris, pp. 395-402.</p><p>[4] Valyrakis, M. & Pavlovskis, E. 2014. "Smart pebble&#8221; design for environmental monitoring applications, In Proceedings of the 11th International Conference on Hydroinformatics, Hamburg, Germany.</p><p>[5] Valyrakis M., A. Alexakis. 2016. Development of a &#8220;smart-pebble&#8221; for tracking sediment transport. International Conference on Fluvial Hydraulics River Flow 2016, St. Liouis, MO, 8p.</p><p>[6] Valyrakis, M., Farhadi, H. 2017. Investigating coarse sediment particles transport using PTV and &#8220;smart-pebbles&#8221; instrumented with inertial sensors, EGU General Assembly 2017, Vienna, Austria, 23-28 April 2017, id. 9980.</p><p>[7] Valyrakis, M., Diplas, P., Dancey, C.L. 2011. Prediction of coarse particle movement with adaptive neuro-fuzzy inference systems, Hydrological Processes, 25 (22). pp. 3513-3524. ISSN 0885-6087, doi:10.1002/hyp.8228.</p><p>[8] Valyrakis, M., Michalis, P., Zhang, H. 2015a. A new system for bridge scour monitoring and prediction. Proceedings of the 36th IAHR World Congress, The Hague, the Netherlands, pp. 1-4.</p>
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.