In the present paper, a methodology for complete characterization of linear isotropic viscoelastic material with spherical instrumented indentation test is proposed. The developed method allows for measuring two independent viscoelastic functions, shear relaxation modulus and time-dependent Poisson's ratio, from the indentation test data obtained at non-decreasing loading, but otherwise arbitrary. Finite element modelling (FEM) is relied upon for validating the proposed methodology and for quantifying the influence of experimental variables on the measurements accuracy. Spherical indentation experiments are performed on several viscoelastic materials: polyoxymethylene, bitumen and bitumen-filler mastics. The viscoelastic material functions obtained with the indentation tests are compared with the corresponding results from the standard mechanical tests. Numerical and experimental results presented indicate that the methodology proposed allows mitigating the machine compliance and loading rate effects on the accuracy of the viscoelastic indentation tests.
Reliable determination of material properties is a key component for modelling and performance prediction of asphalt pavements. This paper deals with the potential use of instrumented indentation tests for viscoelastic characterisation of asphalt mortar as a new alternative to existing techniques. The main focus lies on the potential of indentation tests for multi-scale measurement of the shear relaxation modulus. A three-dimensional finite element model of a rigid spherical indenter penetrating an asphalt mortar sample is developed and used to model indentation tests performed at different material scales. The asphalt mortar is modelled as an idealised fine aggregate composite with elastic spheres, suspended within a viscoelastic bitumen mastic matrix. Based on the obtained numerical results the scale-dependency of the shear relaxation modulus measured with the indentation test is investigated. It is shown that the measurement scale is effectively controlled by the size of the indenter-specimen contact area, while the effect of indentation depth is minimal. The minimum contact area size required for obtaining representative properties, measured at the mortar scale, is determined. The viscoelastic parameters obtained from the indentation model are compared to those obtained using a representative volume element (RVE) for the asphalt mortar. In this way, the paper provides a new impulse for linking the mortar and asphalt scales in the multiscale modelling of asphalt mixtures. Feasibility of the proposed testing technique is further evaluated experimentally. Viscoelastic indentation tests are performed on asphalt mastics and mortar at two different sizes of contact areas. Experimental results indicate that indentation tests allow reliable characterisation of mortars relaxation modulus on both macro-scale as well as on individual component level.
The indentation test is a promising technique for the viscoelastic characterisation of asphalt concrete (AC). Indentation measurements are primarily influenced by the material properties in the direct vicinity of the indenter-specimen contact point. Accordingly, it may become a useful alternative for the characterisation of thin asphalt layers as well as for a quasi-non-destructive AC characterisation in the field. In this study, the spherical indentation test is used to measure the linear viscoelastic properties of AC mixtures extracted from a road test section. The measured complex moduli are compared to those obtained by the shear box test and are found to exhibit a linear correlation. The measurements are further analysed using the Gaussian mixture model to assign each indentation test to either aggregate-dominated or mastic-dominated response. The measurements attributed to mastic-dominated response are found to be more sensitive to the temperature and AC’s binder properties as compared to the average measurements. Accordingly, the proposed test method may provide a promising tool to measure AC viscoelastic properties and monitor the changes in AC binder phase in a non-destructive manner. A finite element micromechanical model is used to identify a representative scale for the response measured in mastic-dominated tests as well as to quantify the effect of measured properties on the AC damage propensity.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.