Information Theory (IT) has been used in Machine Learning (ML) from early days of this field. In the last decade, advances in Deep Neural Networks (DNNs) have led to surprising improvements in many applications of ML. The result has been a paradigm shift in the community toward revisiting previous ideas and applications in this new framework. Ideas from IT are no exception. One of the ideas which is being revisited by many researchers in this new era, is Information Bottleneck (IB); a formulation of information extraction based on IT. The IB is promising in both analyzing and improving DNNs. The goal of this survey is to review the IB concept and demonstrate its applications in deep learning. The information theoretic nature of IB, makes it also a good candidate in showing the more general concept of how IT can be used in ML. Two important concepts are highlighted in this narrative on the subject, i) the concise and universal view that IT provides on seemingly unrelated methods of ML, demonstrated by explaining how IB relates to minimal sufficient statistics, stochastic gradient descent, and variational auto-encoders, and ii) the common technical mistakes and problems caused by applying ideas from IT, which is discussed by a careful study of some recent methods suffering from them.
Two main concepts studied in machine learning theory are generalization gap (difference between train and test error) and excess risk (difference between test error and the minimum possible error). While information-theoretic tools have been used extensively to study the generalization gap of learning algorithms, the information-theoretic nature of excess risk has not yet been fully investigated. In this paper, some steps are taken toward this goal. We consider the frequentist problem of minimax excess risk as a zero-sum game between algorithm designer and the world. Then, we argue that it is desirable to modify this game in a way that the order of play can be swapped. We prove that, under some regularity conditions, if the world and designer can play randomly the duality gap is zero and the order of play can be changed. In this case, a Bayesian problem surfaces in the dual representation. This makes it possible to utilize recent information-theoretic results on minimum excess risk in Bayesian learning to provide bounds on the minimax excess risk. We demonstrate the applicability of the results by providing information theoretic insight on two important classes of problems: classification when the hypothesis space has finite VC-dimension, and regularized least squares.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.