in Wiley InterScience (www.interscience.wiley.com).CO 2 storage in deep saline aquifers is considered a possible option for mitigation of greenhouse gas emissions from anthropogenic sources. Understanding of the underlying mechanisms, such as convective mixing, that affect the long-term fate of the injected CO 2 in deep saline aquifers, is of prime importance. We present scaling analysis of the convective mixing of CO 2 in saline aquifers based on direct numerical simulations. The convective mixing of CO 2 in aquifers is studied, and three mixing periods are identified. It is found that, for Rayleigh numbers less than 600, mixing can be approximated by a scaling relationship for the Sherwood number, which is proportional to Ra 1/2 . Furthermore, it is shown that the onset of natural convection follows t Dc ;Ra À2 and the wavelengths of the initial convective instabilities are proportional to Ra. Such findings give insight into understanding the mixing mechanisms and long term fate of the injected CO 2 for large scale geological sequestration in deep saline aquifers. In addition, a criterion is developed that provides the appropriate numerical mesh resolution required for accurate modeling of convective mixing of CO 2 in deep saline aquifers.
The storage of carbon dioxide and acid gases in deep geological formations is considered a promising option for mitigation of greenhouse gas emissions. An understanding of the primary mechanisms such as convective mixing and geochemistry that affect the long-term geostorage process in deep saline aquifers is of prime importance. First, a linear stability analysis of an unstable diffusive boundary layer in porous media is presented, where the instability occurs due to a density difference between the carbon dioxide saturated brine and the resident brine. The impact of geochemical reactions on the stability of the boundary layer is examined. The equations are linearised, and the obtained system of eigenvalue problems is solved numerically. The linear stability results have revealed that geochemistry stabilises the boundary layer as reaction consumes the dissolved carbon dioxide and makes the density profile, as the source of instability, more uniform. A detailed physical discussion is also presented with an examination of vorticity and concentration eigenfunctions and streamlines' contours to reveal how the geochemical reaction may affect the hydrodynamics of the process. We also investigate the effects of the Rayleigh number and the diffusion time on the stability of a boundary layer coupled with geochemical reactions. Nonlinear direct numerical simulations are also presented, in which the evolution of density-driven instabilities for different reaction rates is discussed. The development of instability is precisely studied for various scenarios. The results indicate that the boundary layer will be more stable for systems with a higher rate of reaction. However, our quantitative analyses show that more carbon dioxide may be removed from the supercritical free phase as the measured flux at the boundary is always higher for flow systems coupled with stronger geochemical reactions.
A modified pressure decay method has been designed and tested for more reliable measurements of molecular diffusion coefficients of gases into liquids. Unlike the conventional pressure decay method, the experimental setup has been designed such that the interface pressure and consequently the dissolved gas concentration at the interface are kept constant. This is accomplished by continuously injecting the required amount of gas into the gas cap from a secondary supply cell to maintain the pressure constant at the gas−liquid interface. The pressure decay is measured in the supply cell. The advantage of the new technique is that, assuming the diffusion coefficient to be constant, a simple analysis allows determination of the equilibrium concentration and diffusion coefficient.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.