The main purpose of this paper is to predict the performances of the turning process using an equivalent oblique cutting model. Based on the real tool, an equivalent cut geometry is performed considering the effects of nose and edge radii. Edge direction and normal cutting angles, uncut chip thickness and depth of cut were redefined by their equivalent values and then used as new inputs.Turning performances, such as cutting force components, cutting temperatures and tribology parameters at the tool/chip interface, were predicted over a wide range of cutting conditions. The position of the maximum temperature at the tool/chip interface and its value are determined by solving the heat equation in the chip using the Finite Difference Method (FDM). Different assumptions were concluded, and the thermal problem is simply resolved using Laplace transform.Acceptable agreement was concluded between experimental cutting force components and those predicted from the equivalent oblique cutting model. It can thus be concluded that the equivalent model of cut is highly recommended to predict turning performances and to study crater wear and tool life.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.