These findings suggest that CM-G modulate positively the vascular function, mainly in responses NO-dependent. CM-G and βG-Sc have an anti-aggregation effect, being CM-G more selective to ADP-induced platelet aggregation.
The obesity-exacerbated asthma phenotype is characterized by more severe asthma symptoms and glucocorticoid resistance. The aim of this study was to standardize an obesity-exacerbated asthma model by a high glycemic level index (HGLI) diet and ovalbumin (OVA) sensitization and challenges in Wistar rats. Animals were divided into groups: control (Ctrl), obese (Ob), asthmatic (Asth), obese asthmatic (Ob + Asth) and obese asthmatic treated with dexamethasone (Ob + Asth + Dexa), and in vivo and in vitro functional and morphological parameters were measured. After HGLI consumption, there was an increase in body weight, fasting blood glucose, abdominal circumferences, body mass index and adiposity index. Respiratory function showed a reduction in pulmonary tidal volume and ventilation. In isolated tracheas, carbachol showed an increase in contractile efficacy in the Ob, Ob + Asth and Ob + Asth + Dexa, but mostly on Ob + Asth. Histological analysis of lungs showed peribronchovascular inflammation and smooth muscle hypertrophy and extracellular remodeling on Ob + Asth and Ob + Asth + Dexa. An obesity-exacerbated asthma model was successfully established. Therefore, this model allows further molecular investigations and the search for new therapies for the treatment and relief of symptoms of patients with obesity-induced resistant asthma.
The aim of this study was to evaluate the effects of supplementing yellow mombin (YM) on the oxidative, somatic, and lipid parameters in rats fed a high-fat diet. A total of 24 adult Wistar rats were randomized into three groups: normal-fat diet (NF), high-fat diet (HF), and high-fat diet with YM supplementation (HFYM). Diets were administered for four weeks, and YM (400 mg/kg) was supplemented via gavage in the last two weeks of the experiment. After the four-week period, the somatic, serum biochemical, and liver oxidative parameters were evaluated. YM has a high antioxidant activity and significant amounts of phenolic compounds, carotenoids, vitamin C, dietary fibre, and minerals. The HFYM group had the lowest body weight (18.75%), body mass index (17.74%), and adiposity (31.63%) compared with the HF group. YM supplementation reduced low-density lipoprotein by 43.05% and increased high-density lipoprotein by 25.73%, but did not improve the triglyceride levels in the serum. YM treatment improved glucose tolerance and lipid peroxidation, and also enhanced the antioxidant capacity, superoxide dismutase, and glutathione peroxidase activities in the liver. These results indicate the lipid-lowering property and potential antioxidant activity of YM against liver oxidative damage caused by a high-fat diet intake, which may be associated with the bioactive compounds present in this fruit.
Fruits agro-industrial by-products may have a great variety of bioactive compounds that promote health. Thus, the effects of supplementation with acerola, cashew and guava processing by-products for 28 days on retinol level, lipid profile and on some aspects related to intestinal function in rats were investigated. The animals supplemented with different fruit by-products presented similar weight gain, faecal pH values and intestinal epithelial structures; however, they showed higher moisture and Lactobacillus spp. and Bifidobacterium spp. counts in faeces compared to the control group. Supplementation with the cashew by-product decreased the blood glucose, acerola and guava by-products reduced serum lipid levels and all fruit by-products tested increased serum and hepatic retinol. The results indicated that acerola and guava byproducts possess a potential hypolipidemic effect. The three fruit by-products increase the hepatic retinol deposition and the faecal populations of beneficial bacterial groups and modulated aspects of intestinal function. The findings of this study can contribute to sustainable fruticulture and support future clinical studies with the supplementation of by-products.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.