This study focuses on the protection of soft-biometric attributes related to the demographic information of individuals that can be extracted from compact representations of face images, called embeddings. We consider a state-ofthe-art technology for soft-biometric privacy enhancement, Incremental Variable Elimination (IVE), and propose Multi-IVE, a new method based on IVE to secure multiple softbiometric attributes simultaneously. Several aspects of this technology are investigated, proposing different approaches to effectively identify and discard multiple soft-biometric attributes contained in face embeddings. In particular, we consider a domain transformation using Principle Component Analysis (PCA), and apply IVE in the PCA domain.A complete analysis of the proposed Multi-IVE algorithm is carried out studying the embeddings generated by stateof-the-art face feature extractors, predicting soft-biometric attributes contained within them with multiple machine learning classifiers, and providing a cross-database evaluation. The results obtained show the possibility to simultaneously secure multiple soft-biometric attributes and support the application of embedding domain transformations before addressing the enhancement of soft-biometric privacy.
The development of large-scale identification systems that ensure the privacy protection of enrolled subjects represents a major challenge. Biometric deployments that provide interoperability and usability by including efficient multibiometric solutions are a recent requirement. In the context of privacy protection, several template protection schemes have been proposed in the past. However, these schemes seem inadequate for indexing (workload reduction) in biometric identification systems. More specifically, they have been used in identification systems that perform exhaustive searches, leading to a degradation of computational efficiency. To overcome these limitations, we propose an efficient privacy-preserving multi-biometric identification system that retrieves protected deep cancelable templates and is agnostic with respect to biometric characteristics and biometric template protection schemes. To this end, a multi-biometric binning scheme is designed to exploit the low intra-class variation properties contained in the frequent binary patterns extracted from different types of biometric characteristics. Experimental results reported on publicly available databases using state-ofthe-art Deep Neural Network (DNN)-based embedding extractors show that the protected multi-biometric identification system can reduce the computational workload to approximately 57% (indexing up to three types of biometric characteristics) and 53% (indexing up to two types of biometric characteristics), while simultaneously improving the biometric performance of the baseline biometric system at the high-security thresholds. The source code of the proposed multi-biometric indexing approach together with the composed multi-biometric dataset, will be made available to the research community once the article is accepted.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.