The Intergovernmental Panel on Climate Change (IPCC) estimates that baseline global GHG emissions may increase 25-90% from 2000 to 2030, with carbon dioxide (CO 2 ) emissions growing 40-110% over the same period. On-road vehicles are a major source of CO 2 emissions in all the developed countries, and in many of the developing countries in the world. Similarly, several criteria air pollutants are associated with transportation, for example, carbon monoxide (CO), nitrogen oxides (NOx), and particulate matter (PM). Therefore, the need to accurately quantify transportation-related emissions from vehicles is essential. The new U.S. Environmental Protection Agency (EPA) mobile source emissions model, MOVES2010a (MOVES), can estimate vehicle emissions on a second-by-second basis, creating the opportunity to combine a microscopic traffic simulation model (such as VISSIM) with MOVES to obtain accurate results. This paper presents an examination of four different approaches to capture the environmental impacts of vehicular operations on a 10-mile stretch of Interstate 4 (I-4), an urban limited-access highway in Orlando, FL. First (at the most basic level), emissions were estimated for the entire 10-mile section "by hand" using one average traffic volume and average speed. Then three advanced levels of detail were studied using VISSIM/MOVES to analyze smaller links: average speeds and volumes (AVG), second-by-second link drive schedules (LDS), and second-by-second operating mode distributions (OPMODE). This paper analyzes how the various approaches affect predicted emissions of CO, NOx, PM2.5, PM10, and CO 2 . The results demonstrate that obtaining precise and comprehensive operating mode distributions on a secondby-second basis provides more accurate emission estimates. Specifically, emission rates are highly sensitive to stop-and-go traffic and the associated driving cycles of acceleration, deceleration, and idling. Using the AVG or LDS approach may overestimate or underestimate emissions, respectively, compared to an operating mode distribution approach.Implications: Transportation agencies and researchers in the past have estimated emissions using one average speed and volume on a long stretch of roadway. With MOVES, there is an opportunity for higher precision and accuracy. Integrating a microscopic traffic simulation model (such as VISSIM) with MOVES allows one to obtain precise and accurate emissions estimates. The proposed emission rate estimation process also can be extended to gridded emissions for ozone modeling, or to localized air quality dispersion modeling, where temporal and spatial resolution of emissions is essential to predict the concentration of pollutants near roadways.
With the growing number of vehicles utilizing roads in the city of Doha, Qatar, most intersections, particularly multilane roundabouts, have been facing traffic congestion dilemma, where traffic demand exceeds capacity. A new design for multilane roundabouts, known as a rotor turbo roundabout, was considered as an alternative to an existing highly congested multilane roundabout. The new design features spiral roadway markings and raised lane dividers which prevent maneuvering within the roundabout and eliminate cutting-offs and weavings. This design has achieved high capacity and low delay in many European countries. In this study, a traffic simulation program, VISSIM, is used to model the complex traffic operation of both the existing and proposed multilane roundabouts and to replicate the high traffic conditions and aggressive driving behavior prevalent among the Middle East countries. Three different rotor designs were examined in an attempt to have a valid comparison between the two types of roundabouts and to adhere to the standard design of the rotor roundabout without violating its essential features. The proposed designs performed slightly better on the minor approaches and managed to deliver an overall improved LOS compared to the conventional design. Major approaches, however, exhibited an increase in vehicle delay and queue lengths. The results showed that the capacity of the conventional three-lane roundabout was always superior to the capacity of the rotor roundabouts. It was concluded that rotor roundabouts may not be suitable for intersections with high demand volumes exceeding 4500 vehicles per hour, and whenever the traffic flow condition is oversaturated.
The type of control at intersections has a major effect on the operation of any urban corridor. Different predefined procedures are available to calculate some of the main operational characteristics, such as capacity, delay, and level of service, in order to select the best type of control. However, there are other important factors that affect major arterials operational characteristics, factors that are not fully addressed, such as the impact of emissions. In this study, a microscopic simulation approach using VISSIM and MOVES was developed to assess the environmental effect of converting four three-lane roundabouts to signalized intersections along a heavily congested urban corridor in Qatar. A decision was made to switch all roundabouts to traffic signals for better operations. Preliminary results indicated that the signal control outperformed the roundabout in the range of 37% to 43% reduction in emissions. A more detailed analysis revealed that roundabout corridor operations' effects on emission rates are divergent from those of signalized corridors, particularly upstream and downstream of the intersections. Immediate roundabout upstream approaches are driver behavior dependent, characterized by substantial coasting at lower speeds and subsequent re-accelerating with less idling, described as acceleration events, which resulted in high emission rates, while signalized corridors are signal timing dependent, characterized by ample idling with less coasting and re-acceleration, resulting in reduced emission rates. The results also revealed that there was no significant difference between emission rates in the vicinity of the two types of control. Both recorded nearly the same emission rate.Implications: A microscopic simulation approach using VISSIM and MOVES was developed to assess the environmental effect of converting four three-lane roundabouts to signalized intersections along a heavily congested urban corridor in Doha, Qatar. Intersection geometries along with the control type have significant impact on emission rates and play a major role in assessing environmental impacts. US EPA MOVES was calibrated to Qatar conditions which can be used to estimate emission factors and quantify vehicular emissions along other corridors in the country. The results can also be beneficial for other countries within the region. PAPER HISTORY
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.