Global change challenges forest adaptability at the distributional limit of species. We studied ring-porous Quercus canariensis Willd. xylem traits to analyze how they adjust to spatio-temporal variability in climate. Trees were sampled along altitudinal transects, and annual time series of radial growth (ring width (RW)) and several earlywood vessel (EV) traits were built to analyze their relationships with climate. The trees responded to increasing water constraints with decreasing altitude and changes in climate in the short term but the analyses showed that xylem did not acclimate in response to long-term temperature increase during the past 30 years. The plants' adjustment to climate variability was expressed in a different but complementary manner by the different xylem traits. At low elevations, trees exhibited higher correlations with water stress indices and trees acclimated to more xeric conditions at low elevations by reducing radial growth and hydraulic diameter (D(H)) but increasing the density of vessels (DV). Average potential conductivity (K(H)) was similar for trees at different altitudes. However, inter-tree differences in xylem traits were higher than those between altitudes, suggesting a strong influence of individual genetic features or micro-site conditions. Trees exhibited higher RW those years with larger D(H) and particularly the linear density of vessels (DV(l)), but partly, climatic signals expressed in RW differed from those in EVs. Trees produced larger D(H) after cold winters and wet years. Ring width responded positively to wet and cool weather in fall and spring, whereas the response to climate of DV and K(H) was generally opposite to that of RW. These relationships likely expressed the negative impact of high respiration rates in winter on the carbon pools used to produce the EVs in the next spring and the overall positive influence of water availability for trees. Our results showed that trees at different sites were able to adjust their hydraulic architecture to climatic variability and temperature increase during recent decades coordinating several complementary traits. Nonetheless, it should be monitored whether they will succeed to acclimate to future climatic scenarios of increasing water stress.
Major intrinsic proteins (MIP) are characterized by a transmembrane pore-type architecture that facilitates transport across biomembranes of water and a variety of low molecular weight solutes. They are found in all parts of life, with remarkable protein diversity. Very little is known about MIP from fungi. And yet, it can legitimately be stated that MIP are pivotal molecular components in the privileged relationships fungi enjoy with plants or soil fauna in various environments. To date, MIP have never been studied in a mycoparasitism situation. In this study, the diversity, expression and functional prediction of MIP from the genus Trichoderma were investigated. Trichoderma spp. genomes have at least seven aquaporin genes. Based on a phylogenetic analysis of the translated sequences, members were assigned to the AQP, AQGP and XIP subfamilies. In in vitro and in planta assays with T. harzianum strain Ths97, expression analyses showed that four genes were constitutively expressed. In a mycoparasitic context with Fusarium solani, the causative agent of fusarium dieback on olive tree roots, these genes were up-regulated. This response is of particular interest in analyzing the MIP promoter cis-regulatory motifs, most of which are involved in various carbon and nitrogen metabolisms. Structural analyses provide new insights into the possible role of structural checkpoints by which these members transport water, H2O2, glycerol and, more generally, linear polyols across the membranes. Taken together, these results provide the first evidence that MIP may play a key role in Trichoderma mycoparasitism lifestyle.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.