Priming response of neutrophil in clinical-related conditions and its mechanism has not been clarified. This study is to determine if thermal injury-induced priming effect of neutrophil is TNF-alpha and p38 dependent. In Experiment 1, bone marrow neutrophil of wild-type (WT) mice and TNF receptor superfamily, member 1A (Tnfrsf1a-/-) mice were harvested and treated with TNF-alpha, platelet activating factor (PAF) first, then with or without N-formyl-Met-Leu-Phe (fMLP). Reactive oxygen species (ROS) production and p38 phosphorylation were evaluated. In Experiment 2, ROS of neutrophil from WT and Tnfrsf1a-/- mice at 3 or 15 h after thermal injury with or without fMLP treatment were assayed. In Experiment 3, p38 and p44/42 phosphorylation, CXCR2 and macrophage inflammatory protein-2 expression, apoptotic ratio, and activating protein-1 (AP-1) and nuclear factor-kappa B (NF-kappaB) activation of neutrophil from WT and Tnfrsf1a-/- mice at 3 h after thermal injury were tested. FMLP treatment after TNF-alpha or PAF incubation of neutrophil increased ROS of PAF-treated but not TNF-alpha-treated neutrophil. PAF treatment increased ROS of neutrophil in WT and Tnfrsf1a-/- mice. FMLP increased ROS of neutrophil of WT mice at 3 h after thermal but not that of Tnfrsf1a-/- mice. TNF-alpha and PAF increased p38 phosphorylation of neutrophil in WT but not that in Tnfrsf1a-/- mice. Thermal injury increased p38 phosphorylation, NF-kappaB activation, and decreased apoptosis of neutrophil at 3 h after thermal injury in WT but not in Tnfrsf1a-/- mice. Thermal injury also induced AP-1 activation and ROS production on neutrophil at 3 and 15 h after thermal injury, respectively, in WT and Tnfrsf1a-/- mice. Collectively, fMLP stimulates ROS of neutrophil through TNF-alpha signaling; PAF stimulates that of neutrophil through both TNF-alpha-dependent and TNF-alpha-independent pathway. Thermal injury induces a TNF-alpha-dependent priming effect and a TNF-alpha-independent activation effect on neutrophil at 3 and 15 h after thermal injury, respectively. NF-kappaB signaling pathway plays an important role in neutrophil activation. Thermal injury also induces TNF-alpha-dependent delay apoptosis and TNF-alpha-independent AP-1 activation of neutrophil at 3 h after thermal injury. Taken together with the TNF-alpha-dependent p38 and NF-kappaB activation in primed neutrophil, we conclude that thermal injury-induced priming effect of polymorphonuclear neutrophil is TNF-alpha and p38 dependent.
Restoration of extracellular fluid in burn shock with hypertonic saline decreased thermal injury-induced bacterial translocation. Hypertonic saline increased the phagocytic activity and TLR2, TLR4, CXCR2, pp38, and P44/42 expression of peritoneal cells. Hypertonic saline decreased reactive oxygen species but increased TLR2, TLR4, and pp38 expression and phagocytic activity of bone marrow neutrophil. Stimulation of the TLRs with lipopolysaccharide in commensal depleted mice increased TLRs expression of neutrophil and decreased thermal injury-induced bacterial translocation. Taken together with the fact that stimulation of TLRs with hypertonic saline increases phagocytic activity of systemic inflammatory cells, we conclude that TLRs play a critical role in the innate immunity by recognizing bacteria and that hypertonic saline enhances host response to bacterial challenge by increasing TLRs of inflammatory cells.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.