The architecture, engineering and construction industry is a major producer of waste, and a major consumer of primary materials. This study presents a method for analysing the dynamics of both floor area and material use in residential housing. The population's demand for housing represents the driver in the system, and the subsequent effects on stocks and flows of residential floor area and building materials in Norway are investigated from 1900 to the projected demands for 2100. Results show that knowledge about past activity levels is important in projecting future levels. Scenarios are applied to the input parameters in the dynamic model to investigate the impacts of changes in these, including variations in material usage (concrete and wood) and material density. All but one scenario suggest a continued increase in the residential housing stock, although at diminishing growth rates, and a substantial increase in demolition, renovation and construction activity in the last half of the present century.
Current waste generation from the construction and demolition industry (C&D industry) in Norway is about 1.25 million tonnes per year. This article presents a procedure for projection of future waste amounts by estimating the activity level in the C&D industry, determining specific waste generation factors related to this activity, and finally calculating projections on flows of waste materials leaving the stocks in use and moving into the waste management system. This is done through a simple model of stocks and flows of buildings and materials. Monte Carlo simulation is used in the calculations to account for uncertainties related to the input parameters in order to make the results more robust. The results show a significant increase in C&D waste for the years to come, especially for the large fractions of concrete/bricks and wood. These projections can be a valuable source of information to predict the future need for waste treatment capacity, the dominant waste fractions, and the challenges in future waste handling systems. The proposed method is used in a forthcoming companion article for eco-efficiency modeling within an evaluation of a C&D waste system.
The massive migration flows from rural to urban areas in China, combined with an expected decline in the total population over the next decades, leads to two important challenges for China's housing: the growth of its urban housing stock and the shrinkage of rural housing. The rural and urban housing systems in China were analyzed using a dynamic material flow analysis model for the period 1900-2100 for several scenarios assuming different development paths for population, urbanization, housing demand per capita, and building lifetime. The simulation results indicate that new housing construction is likely to decline for several decades due to the fast growth over the past 30 years and the expected increased longevity of dwellings. Such an oscillation of new construction activity would have significant implications for the construction industry, employment, raw material demand, and greenhouse gas emissions to produce the construction materials. Policy and practical options for mitigating the negative impacts are considered.
Keywordsbuildings construction demolition industrial ecology recycling renovation SummaryIn this article we have elaborated a consistent framework for the quantification and evaluation of eco-efficiency for scenarios for waste treatment of construction and demolition (C&D) waste. Such waste systems will play an increasingly important role in the future, as there has been for many years, and still is, a significant net increase in stock in the built environment. Consequently, there is a need to discuss future waste management strategies, both in terms of growing waste volumes, stricter regulations, and sectorial recycling ambitions, as well as a trend for higher competition and a need for professional and optimized operations within the C&D waste industry. It is within this framework that we develop and analyze models that we believe will be meaningful to the actors in the C&D industry. Here we have outlined a way to quantify future C&D waste generation and have developed realistic scenarios for waste handling based on today's actual practices. We then demonstrate how each scenario is examined with respect to specific and aggregated cost and environmental impact from different end-of-life treatment alternatives for major C&D waste fractions. From these results, we have been able to suggest which fractions to prioritize, in order to minimize cost and total environmental impact, as the most eco-efficient way to achieve an objective of overall system performance.
The activities of construction, renovation and demolition related to the dwelling (housing) stock have a strong impact on both material and energy demands. A deeper understanding of the dynamics driving these activities is a precondition for a more consistent way to address material and energy demands. The method presented herein is based on a dynamic material flow analysis and is applied to the Norwegian dwelling stock. Input data to the model are population and socio-economic lifestyle indicators such as the average number of persons per dwelling and the average size of dwellings; these determine the size of the floor area stock. Parameters such as the lifetime of dwellings and renovation intervals complete the input set. Outputs of the model are the stock and flows of floor area for the period 1900-2100. Analysis of the renovation activity is given particular attention. Several scenarios are considered in order to test the model's sensitivity to input's uncertainties. Results are compared with statistical data, where the latter are available. The main conclusion is that in the coming decades renovation is likely to overtake construction as the major activity in the Norwegian residential sector.Les activités de construction, de rénovation et démolition relatives au parc de logements ont un fort impact sur la demande de matériaux et d'énergie. Une meilleure compréhension de la dynamique qui anime ces activités est une condition préalable à une méthode plus cohérente de traitement des demandes de matériaux et d'énergie. La méthode présentée ici repose sur une analyse dynamique des flux de matériaux telle qu'elle est appliquée au parc de logements en Norvège. Les données fournies au modèle sont des indicateurs du mode de vie de la population et des indicateurs socio-économiques comme le nombre moyen de personnes par logement et la taille moyenne des logements; ces indicateurs déterminent la superficie des logements. Des paramètres comme la durée de vie des logements et les intervalles de rénovation complètent les données d'entrée. Les résultats du modèle sont le parc de logements et sa superficie pour la période 1900-2100. L'analyse de l'activité de rénovation reçoit une attention particulière. Plusieurs scénarios sont envisagés afin de mettre à l'épreuve la sensibilité du modèle par rapport aux incertitudes des entrées. Les résultats sont comparés aux données statistiques lorsque ces dernières sont disponibles. La conclusion principale réside dans le fait que dans les prochaines décennies, le secteur de rénovation risque de dépasser celui de la construction en tant qu'activité majeure du secteur résidentiel norvégien.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.