The relationship between the shape and gender of a face, with particular application to automatic gender classification, has been the subject of significant research in recent years. Determining the gender of a face, especially when dealing with unseen examples, presents a major challenge. This is especially true for certain age groups, such as teenagers, due to their rapid development at this phase of life. This study proposes a new set of facial morphological descriptors, based on 3D geodesic path curvatures, and uses them for gender analysis. Their goal is to discern key facial areas related to gender, specifically suited to the task of gender classification. These new curvature-based features are extracted along the geodesic path between two biological landmarks located in key facial areas.Classification performance based on the new features is compared with that achieved using the Euclidean and geodesic distance measures traditionally used in gender analysis and classification. Five different experiments were conducted on a large teenage face database (4745 faces from the Avon Longitudinal Study of Parents and Children) to investigate and justify the use of the proposed curvature features. Our experiments show that the combination of the new features with geodesic distances provides a classification accuracy of 89%. They also show that nose-related traits provide the most discriminative facial feature for gender classification, with the most discriminative features lying along the 3D face profile curve.
Classification of facial traits (e.g., lip shape) is an important area of medical research, for example, in determining associations between lip traits and genetic variants which may lead to a cleft lip. In clinical situations, classification of facial traits is usually performed subjectively directly on the individual or recorded later from a three-dimensional image, which is time consuming and prone to operator errors. The present study proposes, for the first time, an automatic approach for the classification and categorisation of lip area traits. Our approach uses novel three-dimensional geometric features based on surface curvatures measured along geodesic paths between anthropometric landmarks. Different combinations of geodesic features are analysed and compared. The effect of automatically identified categories on the face is visualised using a partial least squares method. The method was applied to the classification and categorisation of six lip shape traits (philtrum, Cupid’s bow, lip contours, lip-chin, and lower lip tone) in a large sample of 4747 faces of normal British Western European descents. The proposed method demonstrates correct automatic classification rate of up to 90%.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.