Identifying accident patterns is one of the most vital research foci of driving analysis. Environmental or safety applications and the growing area of fleet management all benefit from accident detection contributions by minimizing the risk vehicles and drivers are subject to, improving their service and reducing overhead costs. Some solutions have been proposed in the past literature for automated accident detection that are mainly based on traffic data or external sensors. However, traffic data can be difficult to access, while external sensors can end up being difficult to set up and unreliable, depending on how they are used. Additionally, the scarcity of accident detection data has limited the type of approaches used in the past, leaving in particular, machine learning (ML) relatively unexplored. Thus, in this paper, we propose a ML framework for automated car accident detection based on mutimodal in-car sensors. Our work is a unique and innovative study on detecting real-world driving accidents by applying state-of-the-art feature extraction methods using basic sensors in cars . In total, five different feature extraction approaches, including techniques based on feature engineering and feature learning with deep learning are evaluated on the strategic highway research program (SHRP2) naturalistic driving study (NDS) crash data set. The main observations of this study are as follows: (1) CNN features with a SVM classifier obtain very promising results, outperforming all other tested approaches. (2) Feature engineering and feature learning approaches were finding different best performing features. Therefore, our fusion experiment indicates that these two feature sets can be efficiently combined. (3) Unsupervised feature extraction remarkably achieves a notable performance score.
Driving a car is an activity that became necessary for exploration, even when living in the present world. Research exploring the topic of safety on the roads has therefore become increasingly relevant. In this paper, we propose a recognition algorithm based on physiological signals acquired from JINS MEME ES_R smart glasses (electrooculography, acceleration and angular velocity) to classify four commonly encountered road types: city road, highway, housing estate and undeveloped area. Data from 30 drivers were acquired in real driving conditions. Hand-crafted statistical features were extracted from the physiological signals to train and evaluate a random forest classifier. We achieved an overall accuracy, precision, recall and F1 score of 87.64%, 86.30%, 88.12% and 87.08% on the test dataset, respectively.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.