Identifying accident patterns is one of the most vital research foci of driving analysis. Environmental or safety applications and the growing area of fleet management all benefit from accident detection contributions by minimizing the risk vehicles and drivers are subject to, improving their service and reducing overhead costs. Some solutions have been proposed in the past literature for automated accident detection that are mainly based on traffic data or external sensors. However, traffic data can be difficult to access, while external sensors can end up being difficult to set up and unreliable, depending on how they are used. Additionally, the scarcity of accident detection data has limited the type of approaches used in the past, leaving in particular, machine learning (ML) relatively unexplored. Thus, in this paper, we propose a ML framework for automated car accident detection based on mutimodal in-car sensors. Our work is a unique and innovative study on detecting real-world driving accidents by applying state-of-the-art feature extraction methods using basic sensors in cars . In total, five different feature extraction approaches, including techniques based on feature engineering and feature learning with deep learning are evaluated on the strategic highway research program (SHRP2) naturalistic driving study (NDS) crash data set. The main observations of this study are as follows: (1) CNN features with a SVM classifier obtain very promising results, outperforming all other tested approaches. (2) Feature engineering and feature learning approaches were finding different best performing features. Therefore, our fusion experiment indicates that these two feature sets can be efficiently combined. (3) Unsupervised feature extraction remarkably achieves a notable performance score.
Recent model-based Recommender Systems (RecSys) algorithms emphasize on the use of features, also called side information, in their design similar to algorithms in Machine Learning (ML). In contrast, some of the most popular and traditional algorithms for RecSys solely focus on a given user-item-rating relation without including side information. An important category of these is matrix factorization-based algorithms, e.g., Singular Value Decomposition and Alternating Least Squares, which are known to have high performance on RecSys data sets. The goal of this case study is to provide a performance comparison and assessment of RecSys and ML algorithms when side information is included. We chose the Movielens-100K data set since it is a standard for comparing RecSys algorithms. We compared six different feature sets with varying quantities of features which were generated from the baseline data and evaluated on a total of 19 RecSys algorithms, baseline ML algorithms, Automated Machine Learning (AutoML) pipelines, and state-of-the-art RecSys algorithms that incorporate side information. The results show that additional features benefit all algorithms we evaluated. However, the correlation between feature quantity and performance is not monotonous for AutoML and RecSys. In these categories, an analysis of feature importance revealed that the quality of features matters more than quantity. Throughout our experiments, the average performance on the feature set with the lowest number of features is ∼6% worse compared to that with the highest in terms of the Root Mean Squared Error. An interesting observation is that AutoML outperforms matrix factorization-based RecSys algorithms when additional features are used. Almost all algorithms that can include side information have higher performance when using the highest quantity of features. In the other cases, the performance difference is negligible (<1%). The results show a clear positive trend for the effect of feature quantity as well as the important effects of feature quality on the evaluated algorithms.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.