The dynamics of nonlinear systems qualitatively change depending on their parameters, which is called bifurcation. A quantum-mechanical nonlinear oscillator can yield a quantum superposition of two oscillation states, known as a Schrödinger cat state, via quantum adiabatic evolution through its bifurcation point. Here we propose a quantum computer comprising such quantum nonlinear oscillators, instead of quantum bits, to solve hard combinatorial optimization problems. The nonlinear oscillator network finds optimal solutions via quantum adiabatic evolution, where nonlinear terms are increased slowly, in contrast to conventional adiabatic quantum computation or quantum annealing, where quantum fluctuation terms are decreased slowly. As a result of numerical simulations, it is concluded that quantum superposition and quantum fluctuation work effectively to find optimal solutions. It is also notable that the present computer is analogous to neural computers, which are also networks of nonlinear components. Thus, the present scheme will open new possibilities for quantum computation, nonlinear science, and artificial intelligence.
Combinatorial optimization problems are ubiquitous but difficult to solve. Hardware devices for these problems have recently been developed by various approaches, including quantum computers. Inspired by recently proposed quantum adiabatic optimization using a nonlinear oscillator network, we propose a new optimization algorithm simulating adiabatic evolutions of classical nonlinear Hamiltonian systems exhibiting bifurcation phenomena, which we call simulated bifurcation (SB). SB is based on adiabatic and chaotic (ergodic) evolutions of nonlinear Hamiltonian systems. SB is also suitable for parallel computing because of its simultaneous updating. Implementing SB with a field-programmable gate array, we demonstrate that the SB machine can obtain good approximate solutions of an all-to-all connected 2000-node MAX-CUT problem in 0.5 ms, which is about 10 times faster than a state-of-the-art laser-based machine called a coherent Ising machine. SB will accelerate large-scale combinatorial optimization harnessing digital computer technologies and also offer a new application of computational and mathematical physics.
Quickly obtaining optimal solutions of combinatorial optimization problems has tremendous value but is extremely difficult. Thus, various kinds of machines specially designed for combinatorial optimization have recently been proposed and developed. Toward the realization of higher-performance machines, here, we propose an algorithm based on classical mechanics, which is obtained by modifying a previously proposed algorithm called simulated bifurcation. Our proposed algorithm allows us to achieve not only high speed by parallel computing but also high solution accuracy for problems with up to one million binary variables. Benchmarking shows that our machine based on the algorithm achieves high performance compared to recently developed machines, including a quantum annealer using a superconducting circuit, a coherent Ising machine using a laser, and digital processors based on various algorithms. Thus, high-performance combinatorial optimization is realized by massively parallel implementations of the proposed algorithm based on classical mechanics.
It has recently been shown that a parametrically driven oscillator with Kerr nonlinearity yields a Schrödinger cat state via quantum adiabatic evolution through its bifurcation point and a network of such nonlinear oscillators can be used for solving combinatorial optimization problems by bifurcation-based adiabatic quantum computation [H. Goto, Sci. Rep. 6, 21686 (2016)]. Here we theoretically show that such a nonlinear oscillator network with controllable parameters can also be used for universal quantum computation. The initialization is achieved by a quantum-mechanical bifurcation based on quantum adiabatic evolution, which yields a Schrödinger cat state. All the elementary quantum gates are also achieved by quantum adiabatic evolution, in which dynamical phases accompanying the adiabatic evolutions are controlled by the system parameters. Numerical simulation results indicate that high gate fidelities can be achieved, where no dissipation is assumed.PACS numbers: 03.67. Lx, Introduction. The standard model for quantum computation consists of quantum bits (qubits) and quantum gates [1] as present-day digital computers consist of bits and logic gates. A qubit is often represented by two discrete quantum states of various physical systems, such as electron or nuclear spins in neutral atoms, ions, molecules, or solids, polarization states or optical modes of single photons, and superconducting artificial atoms with Josephson junctions [2]. Another kind of implementation of a qubit uses a harmonic oscillator, which is described by an infinite-dimensional Hilbert space. In this case, the two computational basis states are defined as two orthogonal states of a harmonic oscillator, such as two coherent states with largely different amplitudes or two cat states with opposite parity [3]. It is known that a universal gate set for such coherent-state qubits can be achieved by gate teleportation with cat states [4,5]. Recently, universal quantum computation with harmonic oscillators accompanied by nonlinear losses has also been proposed [6,7]. Recent advances in circuit quantum electrodynamics with superconducting devices [8,9] make the proposals promising.
Quantum computers with Kerr-nonlinear parametric oscillators (KPOs) have recently been proposed by the author and others. Quantum computation using KPOs is based on quantum adiabatic bifurcations of the KPOs, which lead to quantum superpositions of coherent states, such as Schrödinger cat states. Therefore, these quantum computers are referred to as "quantum bifurcation machines (QbMs)." QbMs can be used for qauntum adiabatic optimization and universal quantum computation. Superconducting circuits with Josephson junctions, Josephson parametric oscillators (JPOs) in particular, are promising for physical implementation of KPOs. Thus, KPOs and QbMs offer not only a new path toward the realization of quantum bits (qubits) and quantum computers, but also a new application of JPOs. Here we theoretically explain the physics of KPOs and QbMs, comparing them with their dissipative counterparts. Their physical implementations with superconducting circuits are also presented.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.