The longevity of resin restorations is currently an area of great interest in adhesive dentistry. However, no work has been conducted to investigate the durability of resin-dentin bond structures using human substrate in vivo. The purpose of this study was to investigate the degradation of the resin-dentin bond structures aged in an oral environment for 1, 2, or 3 years. Cavities were prepared in primary molars, and an adhesive resin system (Scotchbond Multi-Purpose) was applied to the cavity. After 1 to 3 years, following the eruption of the succedaneous permanent teeth, the resin-restored teeth were extracted. Immediately after extraction, those teeth were sectioned perpendicular to the adhesive interface and trimmed to produce an hourglass-shaped specimen. Then, a micro-tensile test was performed at a crosshead speed of 1.0 mm/min. The mean bond strengths were statistically compared with one-way ANOVA and Fisher's PLSD test (p < 0.05). Further, all fractured surfaces were observed by SEM, and the area fraction of failure mode was calculated by means of a digital analyzer on SEM photomicrographs. There were significant differences in tensile-bond strength among all 3 groups (p < 0.05), with mean values ranging from 28.3 +/- 11.3 MPa (control), to 15.2 +/- 4.4 MPa (1 to 2 years), to 9.1 +/- 5.1 MPa (2 to 3 years). Moreover, under fractographic analysis, the proportion of demineralized dentin at the fractured surface in specimens aged in an oral environment was greater than that in control specimens. Furthermore, degradation of resin composite and the depletion of collagen fibrils was observed among the specimens aged in an oral environment. Analysis of the results of this study indicated that the degradation of resin-dentin bond structures occurs after aging in the oral cavity.
The study of the pearl oyster Pinctada fucata is key to increasing our understanding of the molecular mechanisms involved in pearl biosynthesis and biology of bivalve molluscs. We sequenced ∼1150-Mb genome at ∼40-fold coverage using the Roche 454 GS-FLX and Illumina GAIIx sequencers. The sequences were assembled into contigs with N50 = 1.6 kb (total contig assembly reached to 1024 Mb) and scaffolds with N50 = 14.5 kb. The pearl oyster genome is AT-rich, with a GC content of 34%. DNA transposons, retrotransposons, and tandem repeat elements occupied 0.4, 1.5, and 7.9% of the genome, respectively (a total of 9.8%). Version 1.0 of the P. fucata draft genome contains 23 257 complete gene models, 70% of which are supported by the corresponding expressed sequence tags. The genes include those reported to have an association with bio-mineralization. Genes encoding transcription factors and signal transduction molecules are present in numbers comparable with genomes of other metazoans. Genome-wide molecular phylogeny suggests that the lophotrochozoan represents a distinct clade from ecdysozoans. Our draft genome of the pearl oyster thus provides a platform for the identification of selection markers and genes for calcification, knowledge of which will be important in the pearl industry.
The evolutionary origins of lingulid brachiopods and their calcium phosphate shells have been obscure. Here we decode the 425-Mb genome of Lingula anatina to gain insights into brachiopod evolution. Comprehensive phylogenomic analyses place Lingula close to molluscs, but distant from annelids. The Lingula gene number has increased to ∼34,000 by extensive expansion of gene families. Although Lingula and vertebrates have superficially similar hard tissue components, our genomic, transcriptomic and proteomic analyses show that Lingula lacks genes involved in bone formation, indicating an independent origin of their phosphate biominerals. Several genes involved in Lingula shell formation are shared by molluscs. However, Lingula has independently undergone domain combinations to produce shell matrix collagens with EGF domains and carries lineage-specific shell matrix proteins. Gene family expansion, domain shuffling and co-option of genes appear to be the genomic background of Lingula's unique biomineralization. This Lingula genome provides resources for further studies of lophotrochozoan evolution.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.