PurposeWe developed a system for calculating patient positional displacement between digital radiography images (DRs) and digitally reconstructed radiography images (DRRs) to reduce patient radiation exposure, minimize individual differences between radiological technologists in patient positioning, and decrease positioning time. The accuracy of this system at five sites was evaluated with clinical data from cancer patients. The dependence of calculation accuracy on the size of the region of interest (ROI) and initial position was evaluated for clinical use.MethodsFor a preliminary verification, treatment planning and positioning data from eight setup patterns using a head and neck phantom were evaluated. Following this, data from 50 patients with prostate, lung, head and neck, liver, or pancreatic cancer (n = 10 each) were evaluated. Root mean square errors (RMSEs) between the results calculated by our system and the reference positions were assessed. The reference positions were manually determined by two radiological technologists to best‐matching positions with orthogonal DRs and DRRs in six axial directions. The ROI size dependence was evaluated by comparing RMSEs for three different ROI sizes. Additionally, dependence on initial position parameters was evaluated by comparing RMSEs for four position patterns.ResultsFor the phantom study, the average (± standard deviation) translation error was 0.17 ± 0.05, rotation error was 0.17 ± 0.07, and ΔD was 0.14 ± 0.05. Using the optimal ROI size for each patient site, all cases of prostate, lung, and head and neck cancer with initial position parameters of 10 mm or under were acceptable in our tolerance. However, only four liver cancer cases and three pancreatic cancer cases were acceptable, because of low‐reproducibility regions in the ROIs.ConclusionOur system has clinical practicality for prostate, lung, and head and neck cancer cases. Additionally, our findings suggest ROI size dependence in some cases.
Background Regulation of temperature is clinically important in the care of neonates because it has a significant impact on prognosis. Although probes that make contact with the skin are widely used to monitor temperature and provide spot central and peripheral temperature information, they do not provide details of the temperature distribution around the body. Although it is possible to obtain detailed temperature distributions using multiple probes, this is not clinically practical. Thermographic techniques have been reported for measurement of temperature distribution in infants. However, as these methods require manual selection of the regions of interest (ROIs), they are not suitable for introduction into clinical settings in hospitals. Here, we describe a method for segmentation of thermal images that enables continuous quantitative contactless monitoring of the temperature distribution over the whole body of neonates. Methods The semantic segmentation method, U-Net, was applied to thermal images of infants. The optimal combination of Weight Normalization, Group Normalization, and Flexible Rectified Linear Unit (FReLU) was evaluated. U-Net Generative Adversarial Network (U-Net GAN) was applied to thermal images, and a Self-Attention (SA) module was finally applied to U-Net GAN (U-Net GAN + SA) to improve precision. The semantic segmentation performance of these methods was evaluated. Results The optimal semantic segmentation performance was obtained with application of FReLU and Group Normalization to U-Net, showing accuracy of 92.9% and Mean Intersection over Union (mIoU) of 64.5%. U-Net GAN improved the performance, yielding accuracy of 93.3% and mIoU of 66.9%, and U-Net GAN + SA showed further improvement with accuracy of 93.5% and mIoU of 70.4%. Conclusions FReLU and Group Normalization are appropriate semantic segmentation methods for application to neonatal thermal images. U-Net GAN and U-Net GAN + SA significantly improved the mIoU of segmentation.
As the accuracy of body temperature measurement is especially critical in premature infants on admission to the neonatal intensive care unit (NICU), noninvasive measurement using infrared thermography (IRT) has not been widely adopted in the NICU due to a lack of evidence regarding its accuracy. We have established a new calibration method for IRT in an incubator, and evaluated its accuracy and reliability at different incubator settings using a variable-temperature blackbody furnace. This method improved the accuracy and reliability of IRT with an increase in percentage of data with mean absolute error (MAE) < 0.3 °C to 93.1% compared to 4.2% using the standard method. Two of three IRTs had MAE < 0.1 °C under all conditions examined. This method provided high accuracy not only for measurements at specific times but also for continuous monitoring. It will also contribute to avoiding the risk of neonates' skin trouble caused by attaching a thermistor. This study will facilitate the development of novel means of administering neonatal body temperature.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.