CD26 is a type II glycoprotein known as dipeptidyl peptidase IV and has been identified as one of the cell surface markers associated with various types of cancers and a subset of cancer stem cells. Recent studies have suggested that CD26 expression is involved in tumor growth, tumor invasion, and metastasis. The CD26 is shown in an extensive intracellular distribution, ranging from the cell surface to the nucleus. We have previously showed that the humanized anti-CD26 monoclonal antibody (mAb), YS110, exhibits inhibitory effects on various cancers. However, functions of CD26 on cancer cells and molecular mechanisms of impaired tumor growth by YS110 treatment are not well understood. In this study, we demonstrated that the treatment with YS110 induced nuclear translocation of both cell-surface CD26 and YS110 in cancer cells and xenografted tumor. It was shown that the CD26 and YS110 were co-localized in nucleus by immunoelectron microscopic analysis. In response to YS110 treatment, CD26 was translocated into the nucleus via caveolin-dependent endocytosis. It was revealed that the nuclear CD26 interacted with a genomic flanking region of the gene for POLR2A, a subunit of RNA polymerase II, using a chromatin immunoprecipitation assay. This interaction with nuclear CD26 and POLR2A gene consequently led to transcriptional repression of the POLR2A gene, resulting in retarded cell proliferation of cancer cells. Furthermore, the impaired nuclear transport of CD26 by treatment with an endocytosis inhibitor or expressions of deletion mutants of CD26 reversed the POLR2A repression induced by YS110 treatment. These findings reveal that the nuclear CD26 functions in the regulation of gene expression and tumor growth, and provide a novel mechanism of mAb-therapy related to inducible translocation of cell-surface target molecule into the nucleus.
Bone remodeling is maintained by the delicate balance between osteoblasts (OBs) and osteoclasts (OCs). However, the role of CD26 in regulating bone remodeling has not yet been characterized. We herein show that CD26 is preferentially expressed on normal human OCs and is intensely expressed on activated human OCs in osteolytic bone alterations. Macrophage-colony stimulating factor (M-CSF) and soluble receptor activator of NF-kB ligand (sRANKL) induced human OC differentiation, in association with CD26 expression on monocyte-macrophage lineage cells. CD26 expression was accompanied by increased phosphorylation of p38 mitogen-activated protein kinase (p38 MAPK), which is crucial for early human OC differentiation. The humanized anti-CD26 monoclonal antibody, huCD26mAb, impaired the formation and function of tartrate-resistant acid phosphatase (TRAP)/CD26 positive multi-nucleated (nuclei > 3) OCs with maturation in the manner of dose-dependency. It was revealed that huCD26mAb inhibits early OC differentiation via the inactivation of MKK3/6, p38 MAPK and subsequent dephosphorylation of microphthalmia-associated transcription factor (mi/Mitf). These inhibitions occur immediately after RANKL binds to RANK on the human OC precursor cells and were demonstrated using the OC functional assays. huCD26mAb subsequently impaired OC maturation and bone resorption by suppressing the expression of TRAP and OC fusion proteins. In addition, p38 MAPK inhibitor also strongly inhibited OC formation and function. Our results suggest that the blockade of CD26 signaling impairs the development of human functional OCs by inhibiting p38 MAPK-mi/Mitf phosphorylation pathway and that targeting human OCs with huCD26mAb may have therapeutic potential for the treatment of osteolytic lesions following metastasis to alleviate bone destruction and reduce total skeletal-related events (SREs).
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.