We investigated the effects on kidney tissue of 900 megahertz (MHz) EMF applied during the prenatal period. Pregnant rats were exposed to 900 MHz EMF, 1 h/day, on days 13-21 of pregnancy; no procedure was performed on control group pregnant rats or on mothers or newborns after birth. On postnatal day 21, kidney tissues of male rat pups from both groups were examined by light and electron microscopy. Malondialdehyde (MDA), superoxide dismutase (SOD), catalase (CAT) and glutathione levels also were investigated. Light microscopy revealed some degenerative changes in the tubule epithelium, small cystic formations in the primitive tubules and large cysts in the cortico-medullary or medullary regions in the experimental group. Electron microscopy revealed a loss of peritubular capillaries and atypical parietal layer epithelial cells in the experimental group. Biochemical analysis showed significantly increased MDA levels in the experimental group and decreased SOD and CAT levels. EMF applied during the prenatal period can caused pathological changes in kidney tissue in 21-day-old male rats owing to oxidative stress and decreased antioxidant enzyme levels.
Background/aim:To determine what effect a 900-MHz electromagnetic field (EMF) applied in the prenatal period would have on the liver in the postnatal period.
Materials and methods:At the start of the study, adult pregnant rats were divided into two groups, control and experimental. The experimental group was exposed to a 900-MHz EMF for 1 h daily during days 13-21 of pregnancy. After birth, no procedure was performed on either mothers or pups. Male rat pups (n = 6) from the control group mothers (CGMR) and male rat pups (n = 6) from the experimental group mothers (EGMR) were sacrificed on postnatal day 21.Results: Biochemical analyses showed that malondialdehyde and superoxide dismutase values increased and glutathione levels decreased in the EGMR pups. Marked hydropic degeneration in the parenchyma, particularly in pericentral regions, was observed in light microscopic examination of EGMR sections stained with hematoxylin and eosin. Examinations under transmission electron microscope revealed vacuolization in the mitochondria, expansion in the endoplasmic reticulum, and necrotic hepatocytes.
Conclusion:The study results show that a 900-MHz EMF applied in the prenatal period caused oxidative stress and pathological alterations in the liver in the postnatal period.
The growing spread of mobile phone use is raising concerns about the effect on human health of the electromagnetic field (EMF) these devices emit. The purpose of this study was to investigate the effects on rat pup heart tissue of prenatal exposure to a 900 megahertz (MHz) EMF. For this purpose, pregnant rats were divided into experimental and control groups. Experimental group rats were exposed to a 900 MHz EMF (1 h/d) on days 13-21 of pregnancy. Measurements were performed with rats inside the exposure box in order to determine the distribution of EMF intensity. Our measurements showed that pregnant experimental group rats were exposed to a mean electrical field intensity of 13.77 V/m inside the box (0.50 W/m(2)). This study continued with male rat pups obtained from both groups. Pups were sacrificed on postnatal day 21, and the heart tissues were extracted. Malondialdehyde, superoxide dismutase and catalase values were significantly higher in the experimental group rats, while glutathione values were lower. Light microscopy revealed irregularities in heart muscle fibers and apoptotic changes in the experimental group. Electron microscopy revealed crista loss and swelling in the mitochondria, degeneration in myofibrils and structural impairments in Z bands. Our study results suggest that exposure to EMF in the prenatal period causes oxidative stress and histopathological changes in male rat pup heart tissue.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.