Background Two main aims of this animal study were to inspect the possible effects of periodontitis on the structure and functions of the kidneys and the therapeutic effectiveness of melatonin. Methods Twenty‐four male Sprague‐Dawley rats were randomly divided into three groups: control, experimental periodontitis (Ep), and Ep‐melatonin (Ep‐Mel). Periodontitis was induced by placing 3.0‐silk sutures sub‐paramarginally around the cervix of right‐left mandibular first molars and maintaining the sutures for 5 weeks. Then melatonin (10 mg/kg body weight/day, 14 days), and the vehicle was administered intraperitonally. Mandibular and kidney tissue samples were obtained following the euthanasia. Periodontal bone loss was measured via histological and microcomputed tomographic slices. On right kidney histopathological and immunohistochemical, and on the left kidney biochemical (malonyl‐aldehyde [MDA], glutathione, oxidative stress [OSI], tumor necrosis factor [TNF]‐α, interleukin [IL]‐1β, matrix metalloproteinase [MMP]‐8, MMP‐9, and cathepsin D levels) evaluations were performed. Renal functional status was analyzed by levels of serum creatinine, urea, cystatin‐C, and urea creatinine. Results Melatonin significantly restricted ligature‐induced periodontal bone loss (P <0 .01) and suppressed the levels of proinflammatory cytokines (TNF‐α and IL‐1β), oxidative stress (MDA and OSI), and proteases (MMP‐8, MMP‐9, and CtD) that was significantly higher in the kidneys of the rats with periodontitis (P <0.05). In addition, periodontitis‐related histological damages and apoptotic activity were also significantly lower in the Ep‐Mel group (P <0.05). However, the markers of renal function of the Ep group were detected slightly impaired in comparison with the control group (P >0.05); and the therapeutic activity of melatonin was limited (P >0.05). Conclusion Melatonin restricts the periodontitis‐induced inflammatory stress, apoptosis, and structural but not functional impairments.
Cisplatin is an effective antineoplastic drug that is usually used to treat a number of different types of cancer in the clinic. One of the most notable side effects of cisplatin use is infertility. The present study was designed to determine the non-oxidative testicular effects caused by the use of cisplatin in rats. The rats were randomly allocated to the experimental groups. The untreated rats represented the control group (group I) and the treatment groups were as follows: cisplatin alone (group II), cisplatin+amifostine (group III), cisplatin+curcumin (group IV), and cisplatin+caffeic acid phenethyl ester (CAPE; group V). The present study observed that following cisplatin administration, the expression of nuclear factor-κB (NF-κβ)/p65, caspase-3 and 8-deoxyguanosine (8-OHdG) increased in germinal epithelium and Leydig cells. However, the expression of these markers decreased in groups III–V, most notably in the group treated with amifostine. cisplatin induced-damage was countered by amifostine and curcumin. The results revealed that the activation of NF-κB, caspase-3 and 8-OHdG had a significant role in cisplatin-induced testicular toxicity. Thus, amifostine, curcumin and, to a lesser extent, CAPE have the potential for use as therapeutic adjuvants in cisplatin-induced testis injury.
Despite the enormous advances made in the field of oncology, no solution to the side effect of nephrotoxicity caused by cisplatin used as an antineoplastic agent for approximately 40 years has yet been discovered. This study investigated the effects of cisplatin on the kidney, the damage mechanism involved, and the potential capacity of agents such as amifostine, curcumin, and melatonin to elicit a future therapeutic protocol in cisplatin-induced nephrotoxicity at the ultrastructural and molecular levels. Our study consisted of five groups: control (saline solution only; group 1), cisplatin (cisplatin only; group 2), cisplatin + amifostine (group 3), cisplatin + curcumin (group 4), and cisplatin + melatonin (group 5). Rats in all groups except the control group were administered a single intraperitoneal dose of 7.5 mg/kg cisplatin. All animals were sacrificed under anesthesia on the sixth day after cisplatin administration. Cisplatin increased serum urea and serum creatinine levels and caused an increase in tubular necrosis scores (TNS), HPS, NF-κB/p65, 8-OHdG, and caspase-3 expressions (p < 0.05). Additionally, we observed basal membrane thickening in glomerules, intense electron deposition in the subendothelial region, and atypical folds in podocyte pedicels. Amifostine, curcumin, and melatonin reduced the increases in serum urea and serum creatinine levels following cisplatin administration and reduced the levels of TNS, HPS, NF-κB/p65, 8-OHdG, and caspase-3 expressions (p < 0.05). ROS-scavenging antioxidants may be a promising means of preventing acute kidney disease in patients using cisplatin in the treatment of malignant tumors.
Background: The aim of this experimental rat study was to investigate the potential inflammatory effects of periodontitis on cardiac left ventricular tissue and the therapeutic activity of melatonin on these effects. Methods: Twenty-four male Sprague-Dawley rats were randomly divided into three groups: control, experimental periodontitis (Ep), and Ep-melatonin (Ep-Mel). Experimental periodontitis was induced by placing and maintaining 3.0 silk ligatures at a peri marginal position on the left and right mandibular first molars for 5 weeks. Afterward, following the removal of ligatures, melatonin (10 mg/body weight) to Ep-Mel group, and vehicle (saline) to Ep and control groups were administered intraperitoneally for 14 days. On the first day of the eighth week, mandibular and cardiac left ventricular tissue samples were obtained following the euthanasia of the rats in all groups. Alveolar bone loss measurements were made on histological and microcomputed tomographic slices. Cardiac tissue levels of malondialdehyde (MDA), glutathione (GSH), superoxide dismutase (SOD), catalase (CAT), matrix metalloproteinase-9 (MMP-9), and cardiac Troponin-T (cTnT) were evaluated by appropriate biochemical methods. Results: Measurements made on the histological and microcomputed tomographic slices showed that melatonin significantly limits the ligature-induced periodontal tissue destruction (P <0.01). In addition, melatonin was detected to cause a significant decrease of MDA, MMP-9, and cTnT levels which were found to be significantly higher on rats with Ep (P <0.05) while having no significant effect on antioxidant levels (GSH, SOD, and CAT) (P >0.05). Conclusion: Melatonin might be regarded as an important supportive therapeutic agent to reduce the early degenerative changes and possible hypertrophic remodeling at cardiac left ventricular tissues provoked by periodontitis-related bacteria and/or periodontal inflammation.
(2015) Renoprotective effect of aliskiren on renal ischemia/reperfusion injury in rats: electron microscopy and molecular study, Renal Failure, 37:2,[343][344][345][346][347][348][349][350][351][352][353][354] Purpose: To determine the protective effect of aliskiren on ischemia-reperfusion (I/R) injury in a rat renal (I/R) model. Methods: Rats were randomly divided into five groups: sham control group; sham control with aliskiren pretreatment; I/R group and I/R with two doses of aliskiren pretreatment. Rats were unilaterally nephrectomized and subjected to 45 min of renal pedicle occlusion followed by 24 h reperfusion. Aliskiren (50 and 100 mg/kg) was administered orally by gavage 24 and 1 h prior to ischemia. After 24 h reperfusion, kidney samples were taken for the determination of malondialdehyde (MDA) level, superoxide dismutase (SOD), glutathione (GSH) activity and histological evaluation. The level of serum creatinine (SCR) and blood urea nitrogen (BUN), renin and angiotensin II (AT-2) was measured in serum samples. Results: Kidneys from I/R groups showed significant increase in MDA level and significant decrease in GSH, and SOD activity. IL-1b, iNOS and NFkB gene expression significantly increased in the I/R groups in the rat kidney tissue. Aliskiren treatment showed a significant down-regulatory effect on IL-1b, iNOS and NFkB mRNA expression. Compared with the sham group, SCR and BUN, renin and AT-2 were significantly increased in the I/R rats, accompanied by histopathological damage to the kidney. Conclusion: Pretreatment with aliskiren ameliorated I/R-induced renal injury through decreasing nitric oxide and AT-2 levels and by the reduction of injury induced by I/R injury and ameliorated renal histopathological molecular and biochemical changes.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.