Summary
The molecular mechanisms that regulate the rapid transcriptional changes that occur during cytotoxic T lymphocyte (CTL) proliferation and differentiation in response to infection are poorly understood. We have utilised ChIP-seq to assess histone H3 methylation dynamics within naïve, effector and memory virus-specific T cells isolated directly ex vivo after influenza A virus infection. Our results show that within naïve T cells, co-deposition of the permissive H3K4me3 and repressive H3K27me3 modifications is a signature of gene loci associated with gene transcription, replication and cellular differentiation. Upon differentiation into effector and/or memory CTL, the majority of these gene loci lose the repressive H3K27me3 while retaining the permissive H3K4me3 modification. In contrast, immune-related effector gene promoters within naïve T cells lacked the permissive H3K4me3 modification, with acquisition of this modification occurring upon differentiation into effector/memory CTL. Thus, coordinate transcriptional regulation of CTL genes with related functions is achieved using distinct epigenetic mechanisms.
When this Resource was published, the accession number of the newly reported data was not included. The missing information appears in the following text, and the authors regret this oversight.
ACCESSION NUMBERSThe RNA-seq and ChIP-seq data are available in the Sequence Read Archive under the accession number SRP049743.
An assay for anti-p24 IgG3 reactivity would provide an estimate of the incidence of HIV infection that may be applicable for epidemiological surveys as well as for monitoring new infections during vaccine trials and for managing treatment programmes.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.