In this article, selected applications from the experiments included in undergraduate Electronics and Computer Education curriculum are transformed into remotely accessible and configurable manner. The experiment user interfaces and publishing over the internet is developed in LabVIEW. These experiments are suitable for online conduction where students are either in-class or laboratory on-campus and/or at home. In this work, four different remotely configurable experiment modules are designed and implemented. Remotely configurable facility in a predefined range is performed by using switches activated by DO terminals of a data acquisition card through a web-based application. In this way, students can select the desired experiment from the ones stored on the PCB, adjust the voltage applied to the input terminal of the circuit and change the circuit elements values by using telepresence methodology. ß
In 2005, global cardiovascular diseases caused 30% of deaths in Europe, which is 46% of total deaths for all death groups. Today, according to the International Adult Diabetes Federation, 20% to 25% of the adult population in the world has Metabolic Syndrome. Turkish Statistical Institute claims that in Turkey 408782 people died of circulatory system diseases in 2016 and it is expected that numbers will dramatically increase. In 2003, total worldwide healthcare budget of Diabetes Mellitus was up to 64.9 billion International Dollars with the continuing rise in prevalence, it is expected that total costs will increase to 396 billion International Dollars by 2025. The main purpose of this study was to present a clinical decision support system that calculates Metabolic Syndrome existence and evaluate HeartScore risk level for Turkish population. The second objective was to create a detailed personal report about individual’s risk level of Metabolic Syndrome and HeartScore and give advice to him/her to reduce it. The fuzzy logic risk assessment system (FLRAS) was formed in LabVIEW graphical development platform according to International Diabetes Federation and European Heart Journal’s criteria. Mamdani type fuzzy logic sets were identified for each input variable and membership functions were assigned depending on the magnitude of the input limits. System’s performance was tested on 96 (72 females, 24 males) patient data. Results show that the proposed system was able to evaluate the Metabolic Syndrome risk with 0.9285 specificity, 0.92708 accuracy and 0.925 sensitivity.
BackgroundIt is possible to see a number of spectrophotometers produced by commercial purposes developed in line with the technical advices identified by the International Commission on Illumination (CIE) in universities' chemistry labs. These devices are employed in measuring and testing materials with unidentified characteristics as well as reporting the results. However, these systems are not modular in design and do not allow updates or modifications. Moreover, when the literature is reviewed, it can be seen that the researches on computer-controlled devices is limited. It is also reported that the devices with user interfaces bring advantages to researchers in terms of time efficiency and safety. MethodsIn this study, a computer-controlled, modular and low-cost spectrophotometer is designed to measure material densities contained within liquid samples. The proposed system is composed of a main unit, a data acquisition unit and a user interface. All tasks and relevant arrangements involved in a spectrophotometer application are controlled through an interface developed on LabVIEW graphical development platform; the results of the measurements can be monitored in real time, and it is also possible to store data. Thanks to the modular design, it became possible to change and update the relevant stage as needed. The waveform filter can be selected specifically as visible range, ultraviolet range or both depending on the application. ResultsThe experiment was conducted in the visible range and a waveform filter between 400 and 700 nm was used. In the experiments, an easily accessible materials-methylene blue and copper sulfate solutions-were preferred as samples. For these solutions, the waveforms that give the best absorption values were identified and the density was measured at those values. Furthermore, the nonlinearity and repeatability characteristics of the proposed spectrophotometer were analyzed. For this purpose, measured values were compared with the acquired values from another commercial instrument that is already used in medical field. Measurements were repeated 50 times for copper sulfate and 43 times for methylene blue solutions. ConclusionsAfter statistical analysis, it was observed that the reliability of the proposed system is high.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.