In 9 healthy and 14 asthmatic subjects before and after a standard bronchial challenge and a modified [deep inspiration (DI), inhibited] bronchial challenge and after albuterol, we tracked airway caliber by synthesizing a method to measure airway resistance (Raw; i.e., lung resistance at 8 Hz) in real time. We determined the minimum Raw achievable during a DI to total lung capacity and the subsequent dynamics of Raw after exhalation and resumption of tidal breathing. Results showed that even after a bronchial challenge healthy subjects can dilate airways maximally, and the dilation caused by a single DI takes several breaths to return to baseline. In contrast, at baseline, asthmatic subjects cannot maximally dilate their airways, and this worsens considerably postconstriction. Moreover, after a DI, the dilation that does occur in airway caliber in asthmatic subjects constricts back to baseline much faster (often after a single breath). After albuterol, asthmatic subjects could dilate airways much closer to levels of those of healthy subjects. These data suggest that the asthmatic smooth muscle resides in a stiffer biological state compared with the stimulated healthy smooth muscle, and inhibiting a DI in healthy subjects cannot mimic this.
Measurements of lung resistance and elastance (RL and EL) from 0.1 to 8 Hz reflect both the mean level and pattern of lung constriction. The goal of this study was to establish a relation between a deep inspiration (DI) and the heterogeneity of constriction in healthy versus asthmatic subjects. Constriction pattern was assessed from measurements of the RL and EL from 0.1 to 8 Hz in seven healthy subjects and in 12 asthmatics. These data were acquired before and after a DI and before and after a standard methacholine challenge versus a modified challenge in which a DI is prohibited. Generally, avoidance of a DI increased responsiveness. In healthy subjects and in those with mild-to-moderate baseline asthma a bronchial challenge, especially during self-inhibited DI, produced a heterogenous pattern of constriction inclusive of randomly distributed airway closures or near closures. Nevertheless, such subjects were able to reopen their airways via a DI. In contrast, in subjects with severe baseline asthma, there is a more extreme heterogeneous constriction pattern with random airway closures even at baseline. Further, there is no residual bronchodilatory effect of a DI either before or after bronchial challenge. We conjecture that inflammation and wall-remodeling facilitate a dangerous degree of heterogeneous constriction inclusive of airway closures or near closures, and contribute to the prevention of a DI from having a residual bronchodilatory effect.
Measures of airway resistance (Raw) during deep inspiration (DI) suggest that asthmatic subjects possess stiffer, more reactive airway smooth muscle. There is evidence that one can enhance airway reactivity in healthy lungs by prohibiting DI for an extended period. The present study had two goals. First, we determined whether the maximum dilation capacity of asthmatic subjects depended on the rate of the DI. Second, we investigated whether the enhanced reactivity in healthy humans might derive from additional mechanisms not present in asthmatic subjects. For the first goal, we tracked Raw in seven healthy and seven asthmatic subjects during a noncoached DI, a DI with a 5- to 10-s breath hold at total lung capacity, and a rapid DI. We found that the minimum resistance achieved at total lung capacity was independent of the manner in which the DI was performed. For the second goal, we tracked the rate of return of Raw after a DI as well as dynamic lung elastance before and after the DI, at baseline and after bronchial challenge. A drop in lung elastance post-DI would indicate reopening of lung regions and/or reduced heterogeneities. The data show that constricted healthy but not asthmatic subjects produce longer lasting residual dilation. Hence, a portion of the enhanced reactivity in a healthy subject's response to prohibition of DIs is likely due to airway closure and/or atelectasis that can be ablated with a DI. We conclude that preventing DIs does not ensure that healthy subjects will transition entirely to an asthmatic-like hyperreactive lung state.
An index of airway caliber can be tracked in near-real time by measuring airway resistance (Raw) as indicated by lung resistance at 8 Hz. These measurements require the placing of an esophageal balloon. The objective of this study was to establish whether total respiratory system resistance (Rrs) could be used rather than Raw to track airway caliber, thereby not requiring an esophageal balloon. Rrs includes the resistance of the chest wall (Rcw). We used a recursive least squares approach to track Raw and Rrs at 8 Hz in seven healthy and seven asthmatic subjects during tidal breathing and a deep inspiration (DI). In both subject groups, Rrs was significantly higher than Raw during tidal breathing at baseline and postchallenge. However, at total lung capacity, Raw and Rrs became equivalent. Measured with this approach, Rcw appears volume dependent, having a magnitude of 0.5-1.0 cmH2O. l-1. s during tidal breathing and decreasing to zero at total lung capacity. When resistances are converted to an effective diameter, Rrs data overestimate the increase in diameter during a DI. Simulation studies suggest that the decrease in apparent Rcw during a DI is a consequence of airway opening flow underestimating chest wall flow at increased lung volume. We conclude that the volume dependence of Rcw can bias the presumed net change in airway caliber during tidal breathing and a DI but would not distort assessment of maximum airway dilation.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.