We describe and show results from a series of field campaigns that used balloonborne instruments launched from India and Saudi Arabia during the summers 2014–17 to study the nature, formation, and impacts of the Asian Tropopause Aerosol Layer (ATAL). The campaign goals were to i) characterize the optical, physical, and chemical properties of the ATAL; ii) assess its impacts on water vapor and ozone; and iii) understand the role of convection in its formation. To address these objectives, we launched 68 balloons from four locations, one in Saudi Arabia and three in India, with payload weights ranging from 1.5 to 50 kg. We measured meteorological parameters; ozone; water vapor; and aerosol backscatter, concentration, volatility, and composition in the upper troposphere and lower stratosphere (UTLS) region. We found peaks in aerosol concentrations of up to 25 cm–3 for radii > 94 nm, associated with a scattering ratio at 940 nm of ∼1.9 near the cold-point tropopause. During medium-duration balloon flights near the tropopause, we collected aerosols and found, after offline ion chromatography analysis, the dominant presence of nitrate ions with a concentration of about 100 ng m–3. Deep convection was found to influence aerosol loadings 1 km above the cold-point tropopause. The Balloon Measurements of the Asian Tropopause Aerosol Layer (BATAL) project will continue for the next 3–4 years, and the results gathered will be used to formulate a future National Aeronautics and Space Administration–Indian Space Research Organisation (NASA–ISRO) airborne campaign with NASA high-altitude aircraft.
Capsule Summary A Rapid balloon deployment during the 2018 Kilauea eruption provides a unique set of in situ measurements to understand volcanic plume chemical and microphysical properties
Abstract. Satellite observations have revealed an enhanced aerosol layer near the tropopause over Asia during the summer monsoon, called the “Asian Tropopause Aerosol Layer” (ATAL). In this work, aerosol particles in the ATAL were collected with a balloon-borne impactor near the tropopause region over India, using extended-duration balloon flights, in summer 2017 and winter 2018. The chemical composition of these particles was further investigated by quantitative analysis using offline ion chromatography. Nitrate (NO3-) and nitrite (NO2-) were found to be the dominant ions in the collected aerosols with values ranging between 87 and 343 ng m−3 at STP (standard temperature and pressure) during the summer campaign. In contrast, sulfate (SO42-) levels were found to be above the detection limit (>10 ng m−3 at STP) only in winter. In addition, we determined the origin of the air masses sampled during the flights using the analysis of back trajectories as well as a convective proxy from cloud-top temperature fields derived from a geostationary satellite. The results obtained from this analysis were put into the context of large-scale transport and aerosol distribution using GEOS-Chem chemical transport model simulations. The first flight in summer 2017 which sampled an air mass within the Asian monsoon anticyclone (AMA), influenced by convection over Western China, was associated with particle size diameters from 0.05 to 0.15 µm. In contrast, the second flight sampled air masses at the edge of the AMA associated with a larger particle size radius (>2 µm) with a higher NO2- concentration. The sampled air masses in winter 2018 were likely affected by smoke from the Pacific Northwest fire event in Canada, which occurred 7 months before our campaign, associated with concentration enhancements of SO42- and Ca2+. Overall, our results suggest that nitrogen-containing particles represent a large fraction of cloud-free and in-cloud aerosols populating the ATAL, which is partially in agreement with the results from aircraft measurements during the StratoClim (Stratospheric and upper tropospheric processes for better climate predictions) campaign. The exact nature of those particles is still unknown, but their coincidences with subvisible cirrus clouds and their sizes suggest nitric acid trihydrate (NAT) as a possible candidate, as NAT has already been observed in the tropical upper troposphere and lower stratosphere in other studies. Furthermore, GEOS-Chem model simulations indicate that lightning NOx emissions could have significantly impacted the production of nitrate aerosols sampled during the summer of 2017.
<p>Satellite observations have revealed an enhanced aerosol layer near the tropopause over Asia during the summer monsoon, called the Asian Tropopause Aerosol Layer (ATAL). The chemical composition of the ATAL is investigated here using offline ionic analysis of aerosols collected with a balloon-borne impactor near the tropopause region over India onboard extended duration balloon flights in the summer of 2017 and winter 2018. We found NO<sub>3</sub><sup>- </sup>and NO<sub>2</sub><sup>-</sup> dominant among other ions with values ranging between 87-343 ng/m<sup>3</sup> during the summer campaign. In contrast, SO<sub>4</sub> levels were found above detection limit (>10 ng/m<sup>3</sup>) only in winter. In addition, we determined the origin of the air masses sampled during the flights through back trajectory analysis combined with convection. The results obtained therein were put into a context of large-scale transport and aerosol distribution with GEOS-Chem chemical transport model simulations. The first flight of summer 2017 sampled air mass within the Asian monsoon anticyclone (AMA), associated with smaller particle size found on stage 2 (particle size cut off > 0.15 microns) of the impactor, while the second flight sampled air mass at the edge of the AMA associated with larger particle size on stage 1 (particle size cut off between 2 and 0.5 microns). The sampled air masses in winter 2018 were affected by smoke from the Pacific Northwest fire event in Canada, which occurred 7 months prior to our campaign. Concentrations of SO<sub>4</sub><sup>2-</sup>, NH4<sup>+</sup>, and Ca<sup>2+</sup> were enhanced. Overall, our results suggest that nitrogen- containing particles represent a large fraction of aerosols populating the ATAL in agreement with aircraft measurements during the StratoClim campaign. Furthermore, GEOS-chem model simulations suggest that lightning NOx emissions had a minimal impact on the production of nitrate aerosols sampled during the two flights.&#160;</p>
Abstract. Satellite observations have revealed an enhanced aerosol layer near the tropopause over Asia during the summer monsoon, called the Asian Tropopause Aerosol Layer (ATAL). In this work, aerosol particles in the ATAL were collected with a balloon-borne impactor near the tropopause region over India, using extended duration balloon flights, in summer 2017 and winter 2018. Their chemical composition was further investigated by quantitative analysis using offline ion chromatography. Nitrate (NO3−) and nitrite (NO2−) were found to be the dominant ions in the collected aerosols with values ranging between 87–343 ng/m3 STP during the summer campaign. In contrast, sulfate (SO42−) levels were found above the detection limit (> 10 ng/m3 STP) only in winter. In addition, we determined the origin of the air masses sampled during the flights through analysis of back trajectories along with convective influence. The results obtained therein were put into a context of large-scale transport and aerosol distribution with GEOS-Chem chemical transport model simulations. The first flight of summer 2017 which sampled air mass within the Asian monsoon anticyclone (AMA), influenced by convection over Western China, was associated with particle size radius (0.05–2 μm). In contrast, the second flight sampled air mass at the edge of the AMA associated with larger particle size radius (> 2 μm) with higher nitrite concentration. The sampled air masses in winter 2018 were likely affected by smoke from the Pacific Northwest fire event in Canada, which occurred 7 months prior to our campaign, leading to concentration enhancements of SO42− and Ca2+. Overall, our results suggest that nitrogen-containing particles represent a large fraction of aerosols populating the ATAL, in agreement with the results from aircraft measurements during the StratoClim campaign. Furthermore, GEOS-Chem model simulations suggest that lightning NOx emissions had a significant impact on the production of nitrate aerosols sampled during the summer 2017.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.