In this letter, the localization of terrestrial nodes when unmanned aerial vehicles (UAVs) are used as base stations is investigated. Particularly, a novel localization scenario based on received signal strength (RSS) from terrestrial nodes is introduced. In contrast to the existing literature, our analysis includes height-dependent path loss exponent and shadowing which results in an optimum UAV altitude for minimum localization error. Furthermore, the Cramér-Rao lower bound is derived for the estimated distance which emphasizes, analytically, the existence of an optimal UAV altitude. Our simulation results show that the localization error is decreased from over 300 m when using ground-based anchors to 80 m when using UAVs flying at the optimal altitude in an urban scenario.
Abstract-The use of amateur drones (ADrs) is expected to significantly increase over the upcoming years. However, regulations do not allow such drones to fly over all areas, in addition to typical altitude limitations. As a result, there is an urgent need for ADrs surveillance solutions. These solutions should include means of accurate detection, classification, and localization of the unwanted drones in a no-fly zone. In this paper, we give an overview of promising techniques for modulation classification and signal strength based localization of ADrs by using surveillance drones (SDrs). By introducing a generic altitude dependent propagation model, we show how detection and localization performance depend on the altitude of SDrs. Particularly, our simulation results show a 25 dB reduction in the minimum detectable power or 10 times coverage enhancement of an SDr by flying at the optimum altitude. Moreover, for a target no-fly zone, the location estimation error of an ADr can be remarkably reduced by optimizing the positions of the SDrs. Finally, we conclude the paper with a general discussion about the future work and possible challenges of the aerial surveillance systems.
The growing use of Unmanned Aerial Vehicles (UAVs) for various applications requires ubiquitous and reliable connectivity for safe control and data exchange between these devices and ground terminals. Depending on the application, UAV-mounted wireless equipment can either be an aerial user equipment (AUE) that co-exists with the terrestrial users, or it can be a part of wireless infrastructure providing a range of services to the ground users. For instance, AUE can be used for real-time search and rescue and/or video streaming (surveillance, broadcasting) and Aerial Base Station (ABS) can enhance coverage, capacity and energy efficiency of wireless networks. In both cases, UAV-based solutions are scalable, mobile, easy and fast to deploy. However, several technical challenges have to be addressed before such solutions will become widely used. In this work, we present a tutorial on wireless communication with UAVs, taking into account a wide range of potential applications. The main goal of this work is to provide a complete overview of the main scenarios (AUE and ABS), channel and performance models, compare them, and discuss open research points. This work is intended to serve as a tutorial for wireless communication with UAVs, which gives a comprehensive overview of the research done until now and depicts a comprehensive picture to foster new ideas and solutions while avoiding duplication of past work. We start by discussing the open challenges of
The use of aerial anchors for localizing terrestrial nodes has recently been recognized as a cost-effective, swift and flexible solution for better localization accuracy, providing localization services when the GPS is jammed or satellite reception is not possible. In this paper, the localization of terrestrial nodes when using mobile unmanned aerial vehicles (UAVs) as aerial anchors is presented. We propose a novel framework to derive localization error in urban areas. In contrast to the existing works, our framework includes height-dependent UAV to ground channel characteristics and a highly detailed UAV energy consumption model. This enables us to explore different tradeoffs and optimize UAV trajectory for minimum localization error. In particular, we investigate the impact of UAV altitude, hovering time, number of waypoints and path length through formulating an energy-constrained optimization problem. Our results show that increasing the hovering time decreases the localization error considerably at the cost of a higher energy consumption. To keep the localization error below 100m, shorter hovering is only possible when the path altitude and radius are optimized. For a constant hovering time of 5 seconds, tuning both parameters to their optimal values brings the localization error from 150m down to 65m with a power saving around 25%.
Abstract-Internet of things wireless networking with longrange, low power and low throughput is raising as a new paradigm enabling to connect trillions of devices efficiently. In such networks with low power and bandwidth devices, localization becomes more challenging. In this work we take a closer look at the underlying aspects of received signal strength indicator (RSSI) based localization in UNB long-range IoT networks such as Sigfox. Firstly, the RSSI has been used for fingerprinting localization where RSSI measurements of GPS anchor nodes have been used as landmarks to classify other nodes into one of the GPS nodes classes. Through measurements we show that a location classification accuracy of 100% is achieved when the classes of nodes are isolated. When classes are approaching each other, our measurements show that we can still achieve an accuracy of 85%. Furthermore, when the density of the GPS nodes is increasing, we can rely on peer-to-peer triangulation and thus improve the possibility of localizing nodes with an error less than 20m from 20% to more than 60% of the nodes in our measurement scenario. 90% of the nodes is localized with an error of less than 50m in our experiment with non-optimized anchor node locations.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.