In the framework of quantum defect theory, we study super-excited states of Fz molecules which can dissociate into F("P',I,O) and F + ( ' S ~) ion-pair. Based on our calculation, we present a vibrational resolved assignment of the high precision photofragment yield spectra for T from the Fz ion-pair production.
Using optimum valence bond scheme which reduces the computation effort, we study systematically the properties of the critical structures (critical points) of small clusters (up to four atoms) of elements in the second and third row of the periodic table. We also show the evolution process of the clusters from two atoms to four atoms. By examining the electronic structures of all clusters, we can understand why the four-atom clusters for specific elements can have three-dimensional structures with Td symmetry. More interestingly, comparing the variation of the binding energy of such small clusters with the melting points and boiling points of corresponding pure element materials, we can understand the effect of the critical structures in the melting and boiling processes.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.