Recovery of the blood supply is the most effective treatment against ischemic heart disease; however, it is also a major cause of myocardial ischemia/reperfusion injury in clinical therapy. Curcumin has been reported to possess beneficial effects against hypoxia/reoxygenation (H/R)-induced cardiomyocyte injury by regulating cell proliferation, apoptosis and antioxidant enzyme activity. The aim of the present study was to investigate the molecular mechanisms underlying the effects of curcumin on H/R-injured cardiomyocytes. H9C2 cardiomyocytes were pretreated with curcumin, and then cultured under H/R conditions. The viability of H9C2 cells was measured using a Cell Counting kit-8 assay, and the levels of intracellular lactate dehydrogenase (LDH), malondialdehyde (MDA) and superoxide dismutase (SOD) were measured to assess cell injury. Levels of reactive oxygen species (ROS) and apoptosis were evaluated by flow cytometry. The expression levels of Notch intracellular domain (NICD) and numerous downstream genes were analyzed via reverse transcription-quantitative polymerase chain reaction and western blotting. The results revealed that curcumin protected H9C2 cells against H/R-induced injury, reversing the H/R-induced increases in LDH and MDA levels, and decreases in SOD levels. ROS levels in H/R-induced cells were also significantly downregulated by curcumin treatment (P<0.01), and the apoptotic rate was significantly decreased from 15.13% in the H/R group to 7.7% in the H/R + curcumin group (P<0.01). The expression levels of NICD, hairy and enhancer of split (Hes)-1, Hes-5 and hairy/enhancer-of-split related with YRPW motif protein 1 (Hey-1) were significantly decreased in H/R-treated cells following curcumin treatment. Treatment with Jagged1 attenuated the effects of curcumin on cell viability, ROS levels and apoptosis; the Notch pathway was also reactivated. The present study indicated that there was a role for the Notch pathway in the protective effects of curcumin against H/R-induced cardiomyocyte injury, suggesting that downregulation of the Notch pathway may alleviate H/R-induced injury in H9C2 cells.
Obesity, which is often caused by adipocyte metabolism dysfunction, is rapidly becoming a serious global health issue. Studies in the literature have shown that camellia oil (camellia oleifera Abel) exerted potential lipid regulation and other multiple biological activities. Here, we aimed to investigate the effects of camellia oil on obese mice induced by a high-fat diet and to explore gut microbiota alterations after camellia oil intervention. The results showed that oral administration of camellia oil dramatically attenuated the fat deposits, serum levels of the total cholesterol, triacylglycerol, low-density lipoprotein cholesterol, fasting plasma glucose, the atherosclerosis index, the hepatic steatosis, and inflammation in high-fat diet-induced obese mice. Meanwhile, the high-density lipoprotein cholesterol level in obese mice was enhanced after the camellia oil treatment. Furthermore, 16S rRNA analysis showed that certain aspects of the gut microbiota, especially the gut microbiota diversity and the relative abundance of Actinobacteria, Coriobacteriaceae, Lactobacillus, and Anoxybacillus, were significantly increased by camellia oil treatment while the ratio of Firmicutes to Bacteroidetes was decreased. Taken together, our finding suggested that camellia oil was a potential dietary supplement and functional food for ameliorating fat deposits, hyperglycemia, and fatty liver, probably by modifying the gut microbiota composition.
Background & AimsA significant benefit of imatinib adjuvant therapy for patients with high risk gastrointestinal stromal tumors (GIST) has been confirmed. However, the effect of imatinib adjuvant therapy for intermediate-risk GIST has not been well studied. In this article, we compare differences of recurrence-free survival (RFS) rates between patients with intermediate-risk GIST who accepted imatinib adjuvant therapy and those who did not.MethodA retrospective study of intermediate-risk GIST was conducted in the First Affiliated Hospital of Zhengzhou University, China. The pathology reports of 112 patients who had been treated by surgery showed intermediate-risk GIST. The treatment and control groups were designed according to the administration of imatinib adjuvant therapy (≥1 year). Survival and recurrence data were collected and RFS of each group was calculated.ResultsEighty fivepatients with intermediate-risk GIST were followed up. Thirty of them (treatment group) accepted imatinib adjuvant therapy over 1 year. Through comparing the RFS of the two groups, we established that there was no statistically significant difference in RFS rates (P=0.940).ConclusionThere is no significant benefit for patients with intermediate-risk GIST to accept imatinib adjuvant treatment.
p62 protein has been implicated in bone metastasis and is a multifunctional adaptor protein usually correlated with autophagy. Herein, we investigated p62 expression and its prognostic significance in bone metastasis of lung adenocarcinoma, and analyzed whether the mechanism involved depends on autophagy. mRNA and protein expression of p62, LC3B and Beclin 1 were detected by reverse transcription-quantitative PCR and western blotting, respectively, in fresh bone metastasis tissues (n=6 cases) and normal cancellous bone tissues (n=3 cases). The association between p62 and LC3B expression and patient prognosis was subsequently analyzed in 62 paraffin-embedded bone metastasis specimens by immunohistochemistry assay. Small interfering RNA (siRNA) was employed to downregulate p62 expression in SPC-A-1 and A549 cells. Cell proliferation and migration ability were tested by CCK8, CCF and Transwell assays respectively. Autophagy was induced by Rapamycin or inhibited by Atg 7 knockout/Chloroquine in A549 cells and p62 and LC3II/I expression were analyzed. After subcutaneous inoculation or intracardial injection of A549 cells into nude mice, the effect of p62 downregulation in vivo was analyzed by histopathological examination. The results showed that p62, LC3B and Beclin 1 mRNA and protein were all overexpressed in bone metastasis tissues (all P<0.01). Patient samples with high p62 expression levels were significantly associated with more bone lesions (>3), shorter overall survival rates and shorter progression free survival rates compared with patients having lower p62 expression (P=0.014, P=0.003, P=0.048, respectively). Cox regression analysis identified p62 expression as an independent prognostic indicator of overall survival of patients with bone metastasis (P=0.007). In vitro p62 downregulation inhibited SPC-A-1 and A549 cells migration but had no effect on cell proliferation. After autophagy induction or inhibition, p62 expression involved in autophagy flux and changed inconsistently according to the switch of LC3I to LC3II in different autophagy conditions. In vivo p62 downregulation had no effect on growth of subcutaneous tumor. Lung or bone metastasis lesion was not found in all mice model. These findings suggested that p62 overexpression promotes tumor cell invasion out of LC3-dependent autophagy, which could be used a potential prognostic biomarker and therapeutic target for bone metastasis of lung adenocarcinoma.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.