BackgroundCardiac surgery with cardiopulmonary bypass (CPB) is considered to be one of the surgical types with the highest incidence of post-operative delirium (POD). POD has been associated with a prolonged intensive care and hospital stay, long-term neurocognitive deterioration, and increased mortality. However, the specific pathogenesis of POD is still unclear. Untargeted metabolomics techniques can be used to understand the changes of serum metabolites in early POD to discover the relationship between serum metabolites and disease.Materials and MethodsThe present study recruited 58 elderly patients undergoing cardiac surgery with CPB. Serum was collected within the first 24 h after surgery. The Confusion Assessment Method (CAM) and ICU-CAM assessments were used to identify patients who experienced POD. All patients with normal post-operative cognitive assessment were included in the non-POD groups. Moreover, we collected serum from 20 healthy adult volunteers. We performed untargeted analyses of post-operative serum metabolites in all surgical groups, as well as serum metabolites in healthy non-surgical adults by using liquid chromatography mass spectrometry (LC/MS) and analyzed metabolic profiles and related metabolites.ResultsThe probability of POD after cardiac surgery were 31%. There were statistically significant differences in post-operative mechanical ventilation time, ICU stay time and post-operative hospital stay between POD and non-POD group (P < 0.05). And ICU stay time was an independent risk factor for POD. The analysis revealed that a total of 51 differentially expressed metabolites (DEMs) were identified by comparing the POD and non-POD group, mostly lipids and lipid-like molecules. Three phosphatidylinositol (PI) were down-regulated in POD group, i.e., PI [18:0/18:2 (9Z, 12Z)], PI [20:4 (8Z, 11Z, 14Z, 17Z)/18:0], and PI [18:1 (9Z)/20:3 (8Z, 11Z, 14Z)]. The receiver operating characteristic (ROC) curve analysis showed that three kinds of PI metabolites had the highest area under the curve (AUC), which were 0.789, 0.781, and 0.715, respectively. Correlation analysis showed that the expression of three PIs was negatively correlated with the incidence of POD.ConclusionOur findings suggest that lipid metabolism plays an important role in the serum metabolic profile of elderly patients with POD in the early post-operative period. Low serum lipid metabolic PI was associated with incidence of POD in elderly following cardiac bypass surgery, which may provide new insights into the pathogenesis of POD.
Background Tracheoesophageal fistula (TEF) is a rare but life-threatening complication after esophagectomy. A new gastrointestinal occluder device provides treatment for TEF patients. However, TEF-related pneumonia and respiratory failure increase the difficulty of anesthesia management, especially in airway management. Case presentation A 64-year-old man with thoracic esophageal cancer underwent esophagectomy and gastric tube reconstruction one year ago. The patient presented with recurrent cough and sputum after surgery. Gastroscopy revealed a fistula between the esophagogastric anastomotic site and membrane of the trachea. Therefore, the patient received implantation of a new gastrointestinal occluder device under gastroscopy combined with tracheoscopy. Airway management under general anesthesia was discussed with an interdisciplinary decision, and cuffed endotracheal tube with an inner diameter of 5.5 mm was chosen. This airway management ensured adequate oxygenation during the operation and provided sufficient space for the operation of the tracheoscope in the trachea. Finally, the TEF disappeared after the operation, and the patient was administered an oral diet on the first postoperative day. Conclusions The implantation of a new gastrointestinal occluder device under gastroscopy combined with tracheoscopy provides a new treatment for TEF patients. This case report suggests that it is important to select an endotracheal tube with an appropriate inner diameter that can not only meet the requirements of ventilation but also does not affect the operation of tracheoscopy in the trachea.
Background: Recently, the number of neonatal patients receiving surgery under general anesthesia has increased. Ketamine disrupts the proliferation and differentiation of developing neural stem cells (NSCs). Therefore, the safe use of ketamine in pediatric anesthesia has been an issue of increasing concern among anesthesiologists and the children’s parents. Dexmedetomidine (DEX) is widely used in sedation, as an antianxiety agent and for analgesia. DEX has recently been shown to provide neuroprotection against anesthetic-induced neurotoxicity in the developing brain. The aim of this in vivo study was to investigate whether DEX exerted neuroprotective effects on the proliferation and differentiation of NSCs in the subventricular zone (SVZ) following neonatal ketamine exposure. Methods: Postnatal day 7 (PND-7) male Sprague-Dawley rats were equally divided into the following 5 groups: Control group (n=8), Ketamine group (n=8), 1 μg/kg DEX+Ketamine group (n=8), 5 μg/kg DEX+Ketamine group (n=8) and 10 μg/kg DEX+Ketamine group (n=8). The proliferation and differentiation of NSCs in the SVZ were assessed using immunostaining with BrdU incorporation. The levels of Nestin and β-tubulin III in the SVZ were measured using Western blot analyses. Apoptosis was assessed by detecting the levels of the cleaved caspase-3 protein using Western blotting. Results: Neonatal ketamine exposure significantly inhibited NSC proliferation and astrocytic differentiation in the SVZ, and neuronal differentiation was markedly increased. Furthermore, pretreatment with moderate (5 μg/kg) or high doses (10 μg/kg) of DEX reversed the ketamine-induced disturbances in the proliferation and differentiation of NSCs. Meanwhile, neonatal ketamine exposure significantly decreased the expression of Nestin and increased the expression of β-tubulin III in the SVZ compared with the Control group. Treatment with 10 μg/kg DEX notably reversed the ketamine-induced changes in the levels of Nestin and β-tubulin III. In addition, a pretreatment with 10 μg/kg DEX before ketamine anesthesia prevented apoptosis in the SVZ induced by neonatal ketamine exposure. Conclusions: Based on our findings, DEX may exert neuroprotective effects on the proliferation and differentiation of NSCs in the SVZ of neonatal rats in a repeated ketamine anesthesia model.
Background: Recently, the number of neonatal patients receiving surgery under general anesthesia has increased. Ketamine disrupts the proliferation and differentiation of developing neural stem cells (NSCs). Therefore, the safe use of ketamine in pediatric anesthesia has been an issue of increasing concern among anesthesiologists and the children’s parents. Dexmedetomidine (DEX) is widely used in sedation, as an antianxiety agent and for analgesia. DEX has recently been shown to provide neuroprotection against anesthetic-induced neurotoxicity in the developing brain. The aim of this in vivo study was to investigate whether DEX exerted neuroprotective effects on the proliferation and differentiation of NSCs in the subventricular zone (SVZ) following neonatal ketamine exposure.Methods: Postnatal day 7 (PND-7) male Sprague-Dawley rats were equally divided into the following 5 groups: Control group (n=8), Ketamine group (n=8), 1 μg/kg DEX+Ketamine group (n=8), 5 μg/kg DEX+Ketamine group (n=8) and 10 μg/kg DEX+Ketamine group (n=8). The proliferation and differentiation of NSCs in the SVZ were assessed using immunostaining with BrdU incorporation. The levels of Nestin and β-tubulin III in the SVZ were measured using Western blot analyses. Apoptosis was assessed by detecting the levels of the cleaved caspase-3 protein using Western blotting.Results: Neonatal ketamine exposure significantly inhibited NSC proliferation and astrocytic differentiation in the SVZ, and neuronal differentiation was markedly increased. Furthermore, pretreatment with moderate (5 μg/kg) or high doses (10 μg/kg) of DEX reversed the ketamine-induced disturbances in the proliferation and differentiation of NSCs. Meanwhile, neonatal ketamine exposure significantly decreased the expression of Nestin and increased the expression of β-tubulin III in the SVZ compared with the Control group. Treatment with 10 μg/kg DEX notably reversed the ketamine-induced changes in the levels of Nestin and β-tubulin III. In addition, a pretreatment with 10 μg/kg DEX before ketamine anesthesia prevented apoptosis in the SVZ induced by neonatal ketamine exposure.Conclusions: Based on our findings, DEX may exert neuroprotective effects on the proliferation and differentiation of NSCs in the SVZ of neonatal rats in a repeated ketamine anesthesia model.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.