Through the improvement of supporting structure and the utilization of the interaction between surrounding rock and supporting structure, the synergistic system of energy-absorbing yielding anti-impact supporting structure and surrounding rock is established. The process of energy absorption device, energy-absorbing yielding anti-impact supporting structure and synergistic system under impact is simulated to analyze the properties of them. The following conclusions could be drawn. The deformation and yielding process under compression of energy absorption device is divided into five stages. Compared with the traditional supporting structure, the energy-absorbing yielding anti-impact supporting structure has the reaction force with lower value and smaller fluctuation range before the deformation of the energy absorption device reaches the third ascending section. The synergy between surrounding rock and supporting structure plays an important role in roadway support. Compared with the supporting structure without surrounding rock, the reaction force of the supporting structure in the synergistic system is lower, and a stationary stage is added in the early stage of the reaction force curve.
By means of experimental research and theoretical analysis, the nonuniform evolution characteristics of rock friction and sliding were studied. Using digital speckle correlation (DIC) as observation method, the whole process of friction and sliding of a granite specimen in double-sided shear experiment is studied. A spring slider model considering the microscopic characteristics of interface asperities was established to simulate the microscopic process of rock friction and sliding. By comparing the theoretical analysis results with the experimental results, the effect of interface nonuniformity on rock friction sliding instability is studied. The results demonstrated that, with the increase of nonuniformity of sliding interface, the degree of local instability before stick-slip decreases, the stick-slip period shortens, and the value of shear drop during stick-slip period decreases. The nonuniformity of sliding interface will increase after local instability.
The uniaxial compression experiment of red sandstone is observed simultaneously by using acoustic emission and digital speckle correlation methods. The deformation evolution of red sandstone is divided into microfracture random expansion stage, deformation localization stage, subinstability stage, and instability failure stage. Green’s function and dispersion curve of each stage are obtained from the noise data picked up by acoustic emission equipment, and the dispersion characteristics of each evolution stage are analyzed. The results show the following: (1) In the stage of random propagation of microcracks, the noise in the low frequency range passes through at a higher phase velocity, the phase velocity changes periodically, the correlation coefficient is high at the initial time, and the variation trend of frequency dispersion curve is relatively consistent. (2) In the deformation localization stage, the frequency range without zero phase velocity moves to the high frequency range, and the phase velocity changes periodically. (3) In the subinstability stage, dense phase velocity zeros appear on the dispersion curve image, the dispersion curve tends to be disordered, various indicators change obviously, and the correlation coefficient decreases rapidly. (4) In the unstable failure stage, the fracture evolution is completed, and the variation trend of each index of the frequency dispersion curve is consistent. (5) The size and difference of the sensitive kernel function of the two layers are related to the evolution region of the fracture. The sensitivity kernel value of the medium layer where the fracture evolves is high, and the longer the evolution time, the greater the difference.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.