Background
Bone metastasis of colorectal cancer (CRC) often indicates a poor prognosis. Osteolysis can be observed in metastatic sites, implying an aberrant activation of osteoclasts. However, how osteoclastogenesis is regulated in metastatic microenvironment caused by colorectal cancer is still unclear.
Methods
In this study, mice bone metastatic model of CRC was established through injection of MC-38 or CT-26 cells. BrdU assays showed primary CD115 ( +) osteoclast precursors (OCPs) proliferated at the first 2 weeks. Transcriptomic profiling was performed to identify differentially expressing genes and pathways in OCPs indirectly co-cultured with CRC cells
Results
The expression of IL4Rα was found to be significantly upregulated in OCPs stimulated by tumor conditioned medium (CM). Further investigation indicated that IL-4 signaling regulated proliferation of OPCs through interacting with type I IL4 receptor, and neutrophils were the main source of IL-4 in bone marrow. The proliferation of OCPs can be inhibited in IL4 deficiency mice. In addition, ERK pathway was activated by IL4/IL4R signaling. Ravoxertinib, an ERK antagonists, could significantly prevent bone destruction through inhibiting the proliferation of OCPs.
Conclusion
Our study indicates the essential role of IL4/IL4R signaling for the proliferation of OCPs in early metastasis of CRC predominantly through activating ERK pathway, which remarkedly impacts the number of osteoclasts in later stage and leads to osteolytic lesions. Moreover, Ravoxertinib could be a new therapeutical target for bone metastasis of CRC.
Background
Chemoattractant is critical to recruitment of osteoclast precursors and stimulates tumor bone metastasis. However, the role of chemoattractant in bone metastasis of colorectal cancer (CRC) is still unclear.
Methods
Histochemistry analysis and TRAP staining were utilized to detect the bone resorption and activation of osteoclasts (OCs) after administration of CCL7 neutralizing antibody or CCR1 siRNA. qRT-PCR analysis and ELISA assay were performed to detect the mRNA level and protein level of chemoattractant. BrdU assay and Tunel assay were used to detect the proliferation and apoptosis of osteoclast precursors (OCPs). The migration of OCPs was detected by Transwell assay. Western blots assay was performed to examine the protein levels of pathways regulating the expression of CCL7 or CCR1.
Results
OCPs-derived CCL7 was significantly upregulated in bone marrow after bone metastasis of CRC. Blockage of CCL7 efficiently prevented bone resorption. Administration of CCL7 promoted the migration of OCPs. Lactate promoted the expression of CCL7 through JNK pathway. In addition, CCR1 was the most important receptor of CCL7.
Conclusion
Our study indicates the essential role of CCL7-CCR1 signaling for recruitment of OCPs in early bone metastasis of CRC. Targeting CCL7 or CCR1 could restore the bone volume, which could be a potential therapeutical target.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.