Video instance segmentation (VIS) is a composite task that requires the joint detection, tracking, and segmentation of objects in a video. In this work, we introduce a complete framework for VIS, which integrates the strengths of instance segmentation and general object tracking in addressing the unique challenges of VIS. In developing the framework, we investigate effective ways of coordinating the two components for maximum benefits while thoroughly investigate their separate contributions. Our approach improves over the official baseline by an absolute 14.4% in mAP and achieves the second place in the 2019 YouTube-VIS challenge.
Cryo-em (Cryogenic electron microscopy) is a technology this can build bio-macromolecule of three-dimensional structure. Under the condition of now, the projection image of the biological macromolecule which is collected by the Cryo-em technology that the contrast is low, the signal to noise is low, image blurring, and not easy to distinguish single particle from background, the corresponding processing technology is lagging behind. Therefore, make Cryoem image denoising useful, and maintaining bio-macromolecule of contour or signal of function-construct improve Cryo-em image quality or resolution of Cryo-em three-dimensional structure have important effect. This paper researched a denoising function base on GANs (generative adversarial networks), purpose an improved discriminant model base on Wasserstein distance and an improved image denoising model by add gray constraint. Our model turn discriminant model's training process from binary classification's training process into regression task training process, it make GANs in training process more stable, more reasonable parameter passing. Meantime, we also propose an improved generative model by add gray constraint. The experimental results show that our model can increase the peak signal-to-noise ratio of the Cryo-em simulation image by 10.3 dB and improve SSIM (Structural Similarity Index) of the denoised image results by 0.43. Compared with traditional image denoising algorithms such as BM3D (Block Matching 3D), our model can better save the model structure and the vein signal in the original image and the operation speed is faster.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.