No abstract
Continuous culture systems allow for the controlled growth of microorganisms over a long period of time. Here, we develop a novel test for mutagenicity that involves growing yeast in continuous culture systems exposed to low levels of mutagen for a period of approximately 20 days. In contrast, most microorganism-based tests for mutagenicity expose the potential mutagen to the biological reporter at a high concentration of mutagen for a short period of time. Our test improves upon the sensitivity of the well-established Ames test by at least 20-fold for each of two mutagens that act by different mechanisms (the intercalator ethidium bromide and alkylating agent methyl methanesulfonate). To conduct the tests, cultures were grown in small, inexpensive continuous culture systems in media containing (potential) mutagen, and the resulting mutagenicity of the added compound was assessed via two methods: a canavanine-based plate assay and whole genome sequencing. In the canavanine-based plate assay, we were able to detect a clear relationship between the amount of mutagen and the number of canavanine-resistant mutant colonies over a period of one to three weeks of exposure. Whole genome sequencing of yeast grown in continuous culture systems exposed to methyl methanesulfonate demonstrated that quantification of mutations is possible by identifying the number of unique variants across each strain. However, this method had lower sensitivity than the plate-based assay and failed to distinguish the different concentrations of mutagen. In conclusion, we propose that yeast grown in continuous culture systems can provide an improved and more sensitive test for mutagenicity.
Preventing eutrophication of inland freshwater ecosystems requires quantifying the phosphorous (P) content of the streams and rivers that feed them. Typical methods for measuring P assess soluble reactive P (SRP) or total P (TP) and require expensive analytical techniques that produce hazardous waste. Here we present a novel method for measuring the more relevant bioavailable P (BAP); this assay utilizes the growth of familiar baker's yeast, avoids production of hazardous waste, and reduces cost relative to measurements of SRP and TP. The yeast BAP (yBAP) assay takes advantage of the observation that yeast density at saturating growth increases linearly with provided P. We show that this relationship can be used to measure P in freshwater in concentration ranges relevant to eutrophication. In addition, we measured yBAP in water containing known amount of fertilizer and in samples from agricultural waterways. We observed that the majority of yBAP values were between those obtained from standard SRP and TP measurements, demonstrating that the assay is compatible with real-world settings. The cost-effective and nonhazardous nature of the yeast-based assay suggests that it could have utility in a range of settings, offering added insight to identify water systems at risk of eutrophication from excess phosphorus.
Preventing the eutrophication of inland freshwater ecosystems requires quantifying the phosphorus (P) content of the streams and rivers that feed them. Typical methods for measuring P assess soluble reactive P (SRP) or total P (TP) and require expensive analytical techniques that produce hazardous waste. Here, we present a novel, low-tech method for measuring the more relevant bioavailable P (BAP); this assay utilizes the growth of baker’s yeast, avoids the production of hazardous waste, and reduces cost relative to SRP and TP measurements. The yeast BAP (yBAP) assay takes advantage of the observation that yeast density at saturating growth increases linearly with provided P. We show that this relationship can be used to measure P in freshwater in concentration ranges relevant to eutrophication. In addition, we measured yBAP in water containing known amounts of fertilizer and in samples from agricultural waterways. We observed that the majority of yBAP values were between those obtained from standard SRP and TP measurements, demonstrating that the assay is compatible with real-world settings. The cost-effective and nonhazardous nature of the yeast-based assay suggests that it could have utility in a range of settings, offering added insight into identify water systems at risk of eutrophication from excess phosphorus.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.