Background: Elevated SNCA gene expression and intracellular accumulation of the encoded α-synuclein (aSyn) protein are associated with the development of Parkinson disease (PD). To date, few enzymes have been examined for their ability to degrade aSyn. Here, we explore the effects of CTSD gene expression, which encodes the lysosomal protease cathepsin D (CathD), on aSyn processing.
Most cases of early-onset torsion dystonia are caused by deletion of GAG in the coding region of the DYT1 gene encoding torsinA. This autosomal dominant neurologic disorder is characterized by abnormal movements, believed to originate from neuronal dysfunction in the basal ganglia of the human brain. The torsins (torsinA and torsinB) are members of the "ATPases associated with a variety of cellular activities" (AAA(+)) superfamily of proteins that mediate chaperone and other functions involved in conformational modeling of proteins, protection from stress, and targeting of proteins to cellular organelles. In this study, the intracellular localization and levels of endogenous torsin were evaluated in rat pheochromocytoma PC12 cells following differentiation and stress. TorsinA, apparent MW 37 kDa, cofractionates with markers for the microsomal/endoplasmic reticulum (ER) compartment and appears to reside primarily within the ER lumen based on protease resistance. TorsinA immunoreactivity colocalizes with the lumenal ER protein protein disulfide isomerase (PDI) and extends throughout neurites. Levels of torsinA did not increase notably in response to nerve growth factor-induced differentiation. None of the stress conditions tested, including heat shock and the unfolded protein response, affected torsinA, except for oxidative stress, which resulted in an increase in the apparent MW of torsinA and redistribution to protrusions from the cell surface. These findings are consistent with a relatively rapid covalent modification of torsinA in response to oxidative stress causing a change in state. Mutant torsinA may interfere with and/or compromise ER functions, especially in dopaminergic neurons, which have high levels of torsinA and are intrinsically vulnerable to oxidative stress.
Four naturally occurring sequence variations have been found in the coding region of the DYT1 gene encoding torsinA. One of these, a 3 bp (DeltaGAG) deletion, underlies dominantly inherited cases of early-onset torsion dystonia. Others, including a single nucleotide polymorphism that replaces aspartic acid (D) at residue 216 with histidine (H) in 12% of normal alleles and two other rare deletions, have not been clearly associated with disease. To gain insight into how these sequence variations affect torsinA, we used the structure of the related protein ClpB to provide a model of torsinA's AAA+ domain. Motifs important for ATP hydrolysis-sensor 1 and sensor 2-were identified, mutagenized and used to validate predictions of this model. Inspection revealed that the DeltaGAG deletion associated with dystonia removes one residue from an alpha-helix in the C-terminal portion of the AAA+ domain. The resulting distortion in torsinA structure may underlie this mutant's known tendency to produce ER-derived inclusions as well as its proposed loss of function. The D/H polymorphism at residue 216 falls in the N-terminal portion of the AAA+ domain near the sensor 1 motif. Surprisingly, cells expressing torsinA with the polymorphic histidine developed inclusions similar to those associated with DeltaGAG-torsinA, indicating that this change may also affect torsinA structure. Introducing H216 into DeltaGAG-torsinA reduced its tendency to form inclusions, suggesting that the two changes offset each other. Our findings point to a structural basis for the defects associated with the disease-linked DeltaGAG deletion in torsinA. They also suggest possible connections between the allelic polymorphism at residue 216 and the penetrance of DYT1 dystonia, as well as a possible role for this polymorphism in related disease states.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.