Stimulus-triggered protein synthesis is critical for brain health and function. However, due to technical hurdles, de novo neuronal translation is predominantly studied in cultured cells, whereas electrophysiological and circuit analyses often are performed in brain slices. The different properties of these two experimental systems create an information gap about stimulus-induced alterations in the expression of new proteins in mature circuits. To address this, we adapted two existing techniques, BONCAT and SILAC, to a combined proteomic technique, BONLAC, for use in acute adult hippocampal slices. Using BDNF-induced protein synthesis as a proof of concept, we found alterations in expression of proteins involved in neurotransmission, trafficking, and cation binding that differed from those found in a similar screen in cultured neurons. Our results indicate important differences between cultured neurons and slices, and suggest that BONLAC could be used to dissect proteomic changes underlying synaptic events in adult circuits.
Administration of typical antipsychotic drugs, such as haloperidol, promotes cAMP-dependent signaling in the medium spiny neurons (MSNs) of the striatum. In this study, we have examined the effect of haloperidol on the state of phosphorylation of the ribosomal protein S6 (rpS6), a component of the small 40S ribosomal subunit. We found that haloperidol increases the phosphorylation of rpS6 at the dual site Ser235/236, which is involved in the regulation of mRNA translation. This effect was exerted in the MSNs of the indirect pathway, which express specifically dopamine D2 receptors (D2Rs) and adenosine A2 receptors (A2ARs). The effect of haloperidol was decreased by blockade of A2ARs or by genetic attenuation of the Ga olf protein, which couples A2ARs to activation of adenylyl cyclase. Moreover, stimulation of cAMP-dependent protein kinase A (PKA) increased Ser235/236 phosphorylation in cultured striatal neurons. The ability of haloperidol to promote rpS6 phosphorylation was abolished in knock-in mice deficient for PKA activation of the protein phosphatase-1 inhibitor, dopamine-and cAMP-regulated phosphoprotein of 32 kDa. In contrast, pharmacological or genetic inactivation of p70 rpS6 kinase 1, or extracellular signal-regulated kinases did not affect haloperidol-induced rpS6 phosphorylation. These results identify PKA as a major rpS6 kinase in neuronal cells and suggest that regulation of protein synthesis through rpS6 may be a potential target of antipsychotic drugs.
Measuring the synthesis of new proteins in the context of a much greater number of pre-existing proteins can be difficult. To overcome this obstacle, bioorthogonal noncanonical amino acid tagging (BONCAT) can be combined with stable isotope labeling by amino acid in cell culture (SILAC) for comparative proteomic analysis of de novo protein synthesis (BONLAC). In the present study, we show that alkyne resin-based isolation of l-azidohomoalanine (AHA)-labeled proteins using azide/alkyne cycloaddition minimizes contamination from pre-existing proteins. Using this approach, we isolated and identified 7414 BONCAT-labeled proteins. The nascent proteome isolated by BONCAT was very similar to the steady-state proteome, although transcription factors were highly enriched by BONCAT. About 30% of the methionine residues were replaced by AHA in our BONCAT samples, which allowed for identification of methionine-containing peptides. There was no bias against low-methionine proteins by BONCAT at the proteome level. When we applied the BONLAC approach to screen for brain-derived neurotrophic factor (BDNF)-induced protein synthesis, 53 proteins were found to be significantly changed 2 h after BDNF stimulation. Our study demonstrated that the newly synthesized proteome, even after a short period of stimulation, can be efficiently isolated by BONCAT and analyzed to a depth that is similar to that of the steady-state proteome.
Although antipsychotic drugs can reduce psychotic behavior within a few hours, full efficacy is not achieved for several weeks, implying that there may be rapid, short-term changes in neuronal function, which are consolidated into long-lasting changes. Here, we showed that the antipsychotic drug haloperidol, a dopamine receptor type 2 (D2R) antagonist, stimulated the kinase Akt to activate the mRNA translation pathway mediated by the mammalian target of rapamycin complex 1 (mTORC1). In primary striatal D2R-positive neurons, haloperidol-mediated activation of mTORC1 resulted in increased phosphorylation of ribosomal protein S6 (S6) and eukaryotic translation initiation factor 4E-binding protein (4E-BP). Proteomic mass spectrometry revealed marked changes in the pattern of protein synthesis after acute exposure of cultured striatal neurons to haloperidol, including increased abundance of cytoskeletal proteins and proteins associated with translation machinery. These proteomic changes coincided with increased morphological complexity of neurons that was diminished by inhibition of downstream effectors of mTORC1, suggesting that mTORC1-dependent translation enhances neuronal complexity in response to haloperidol. In vivo, we observed rapid morphological changes with a concomitant increase in the abundance of cytoskeletal proteins in cortical neurons of haloperidol-injected mice. These results suggest a mechanism for both the acute and long-term actions of antipsychotics.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.